簡易檢索 / 詳目顯示

研究生: 莊育禎
Chuang, Yu-Chen
論文名稱: 參與蝴蝶蘭香味合成之MYB轉錄因子研究
Study of MYB transcription factors involved in fragrance biosynthesis in Phalaenopsis orchids
指導教授: 陳虹樺
Chen, Hong-Hwa
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 55
中文關鍵詞: GDPS啟動子MYB大葉蝴蝶蘭
外文關鍵詞: P. bellina, GDPS, promoter, MYB
相關次數: 點閱:113下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大葉蝴蝶蘭的花因具有優雅外形及甜美香味,因此十分受大眾歡迎。雖然花香的生合成路徑已在多種植物被廣泛研究,但調控機制幾乎未知。大葉蝴蝶蘭的花香經由本實驗室過去的研究發現主要由單萜類構成,單萜類生合成路徑亦被推導出,其中PbGDPS (geranyl pyrophosphate synthase)因可合成單萜類的前驅物GDP而被視為是蘭花香味生合成路徑中的關鍵酵素。PbGDPS的表現模式與大葉蝴蝶蘭單萜類釋放曲線一致,皆在開花後第五天達到最大量。利用本實驗室所建立的蘭花Oligo-microarray實驗結果,搜尋到三個與PbGDPS的表現模式相似的MYB轉錄因子,分別為PbMYB1,PbMYB2及PbMYB6。PbMYB1的表現量於開花後第五天達到最高,主要在花瓣及唇辦中表現。PbMYB2會在開花當天及開花後第五天有大量的表現,而在花萼及花瓣中皆可偵測到其表現。PbMYB6會持續表現,但仍然在開花後第五天有較大的表現量。經由多重序列比對確認PbMYB1,PbMYB2屬於R2R3-MYB轉錄因子,PbMYB6因含有一個coiled-coil區域,被歸類於MYB-CC轉錄因子。演化分析顯示PbMYB1,PbMYB2可能與phenylpropanoids生成及花藥發育有關,而關於MYB-CC轉錄因子的研究目前主要發現和磷缺乏時的訊息傳遞有關。為確認PbMYB是否可以調控PbGDPS,首先選殖出PbGDPS的2515-bp啟動子,經由序列分析發現其上具有MYB結合區位。藉由雙螢光酵素系統確認PbMYB1,PbMYB2與PbMYB6具有和PbGDPS啟動子結合之能力,並進一步利用酵母菌單雜交系統發現PbMYB轉錄因子可結合上PbGDPS啟動子上約-1000至-700及-150至轉錄起始點的兩個小片段上。經由比較PbGDPS與不具香味的姬蝴蝶蘭PeGDPS的啟動子序列後,發現於-1000至-700的小片段中有一段11個核甘酸大小的片段差異(TTATTAACTTT),此11個核甘酸大小的片段也可在其它三種具有香味的蝴蝶蘭(P. amboinensis, P. lueddemanniana, P. gigantea)GDPS啟動子上發現。此外,利用酵母菌單雜交系統發現不具香味的PeGDPS啟動子無法被PbMYB轉錄因子結合,進一步證實PbMYB轉錄因子可直接結合上11個核甘酸大小的片段。因此,此片段極有可能是PbMYB1,PbMYB2與PbMYB6調控的cis-element,且極有可能與蝴蝶蘭的香味性狀有關。由於PbMYB1,PbMYB2與PbMYB6在空間及時間上有不同的表現模式,推測此三個PbMYB轉錄因子,特別是PbMYB1與PbMYB2,會在不同的花部器官與時期中影響PbGDPS的表現,進而影響單帖類物質的合成,並影響香味物質的合成量或參與在防禦機制中。本研究的貢獻在於利用比較不同的蝴蝶蘭品種,找出可能與花香合成調控有關的影響因子,使我們對蘭花花香調控有更進一步的了解。

    Phalaenopsis bellina is very popular for its elegant form and sweet fragrances. Although the floral scent biosynthesis pathway has been studied in various species, their regulation mechanism are almost unknown. Previously P. bellina geranyl diphosphate synthase (PbGDPS) was identified to be one of the key enzyme for supplying geranyl diphosphate for monoterpenes biosynthesis. To further study the regulation of PbGDPS expression, three MYB transcription factors, including PbMYB1, PbMYB2, and PbMYB6, were identified from the Phalaenopsis TF-Oligo microarray. PbMYB1 and PbMYB2 have typical R2R3 MYB DNA binding domain, while PbMYB6 is a MYB-CC (coil-coiled) type protein. Phylogenetic analysis results place PbMYB1 and PbMYB2 in the same group involved in regulation of phenylpropanoid biosynthesis and anther development. Study on the MYB-CC type transcription factors is mainly focused on controlling of phosphate metabolism in plants. Transcription level of PbMYB1, PbMYB2 and PbMYB6 all increased at D+5 (day 5 post-anthesis), consistent with both maximal emission of monoterpenes and expression of PbGDPS. Expression of PbMYB1 was detected in petals and lips, while PbMYB2 expressed in sepals and petals. To study the regulation of PbGDPS expression by these three MYB transcription factors, a 2515-bp promoter region of PbGDPS was isolated and consensus DNA-binding sites for MYB transcription factors were predicted. All three MYB transcription factors revealed the ability of driving the expression of both 2-kb and 1-kb PbGDPS upstream regulatory sequences in the dual-luciferase assay. The yeast one-hybrid assay of dissected PbGDPS 1-kb promoter region has shown PbMYBs could bind on the furthest subfragment and minimal promoter. According to the comparison between PbGDPS and PeGDPS promoter sequences, a putative cis-element (TTATTAACTTT) was identified from the furthest subfragment of PbGDPS promoter. This 11-nt element also existed in the GDPS promoters of three other scented Phalaenopsis species (P. amboinensis, P. lueddemanniana, P. gigantea). The furthest region of PbGDPS promoter, as well as the 11-nt cis-element, were bound by PbMYBs, in contrast, PbMYBs could not bind on the PeGDPS promoter. The 11-nt unique sequences, is a potential cis-element bound by PbMYBs, and might related to the scent phenotype in Phalaenopsis. The differentially temporal and spatial expression of PbMYB1, PbMYB2 and PbMYB6 was responsible for regulating PbGDPS expression in right organs at right timing. In this study, the regulation floral scent in P. bellina is initially unraveled by comparing the promoter of GDPS among scent and scentless Phalaenopsis species.

    中文摘要 ii Abstract iii 1. INTRODUCTION 1 1.1 The economic importance of Phalaenopsis 1 1.2 Fragrance compounds and their biosynthesis pathway 1 1.2.1 The role of volatiles compounds in plants 1 1.2.2 The three classes of fragrance compounds and their biosynthesis pathway 2 1.2.2.1 Biosynthesis of volatile terpenoids 2 1.2.3 Various scented species in Phalaenopsis 3 1.2.4 Research on fragrance biosynthesis pathway in P. bellina 4 1.3 Regulation of secondary metabolites biosynthesis pathway by MYB 4 transcription factors 1.3.1 Characteristics of MYB domain and three classes of MYB transcription 5 factors 1.3.1.1 MYB DNA binding domain 5 1.3.1.2 Three classes of MYB transcription factors in plants 6 1.3.2 MYB proteins in different plant 6 1.3.2.1 MYB proteins in orchids 6 1.3.3 MYB proteins regulating secondary metabolites in plants 6 1.3.3.1 Myb proteins regulating biosynthesis of phenylpropanoids 6 1.3.3.2 MYB proteins regulating biosynthesis of anthocyanins 7 1.3.3.3 MYB proteins regulating biosynthesis of fragrance compounds 7 2. Purpose 9 3. MATERIALS AND METHODS 10 3.1 Plant materials 10 3.2 RNA preparation 10 3.3 Quantitative real-time PCR 10 3.4 Genomic DNA extraction 10 3.5 Promoter isolation 10 3.6 Preparation of the reporter and effector constructs 11 3.7 Transient transfection experiments and dual luciferase assay 12 3.8 DNA binding specificity of MYB proteins in the yeast one-hybrid assay 12 3.9 Scent chemical collection and chromatographic analysis 13 4. RESULTS 14 4.1 Identification and expression of PbMYB1, PbMYB2 and PbMYB6 14 4.2 PbMYB1, PbMYB2 and PbMYB6 encode MYB type transcription factors 14 4.3 Isolation of promoters of PbGDPS, PeUFGT3 and PeMADS6 15 4.4 Transactivation of PbGDPS promoter by PbMYB proteins 16 4.5 Dissecting the 1-kb fragment of PbGDPS promoter 16 4.6 Comparison of the GDPS promoter sequences from various Phalaenopsis 18 species 4.7 The dissecting subfragment of PeGDPS promoter 18 4.8 The putative cis-element on the No. 1 subfragements of PbGDPS promote 19 5. DISCUSSION 20 5.1 The highly conserved GDPS promoter among several scented Phalaeonopsis 20 species 5.2 Putative cis-element on PbGDPS recognized by PbMYB1, PbMYB2 and 20 PbMYB6 5.3 Differentially temporal and spatial expression of PbMYB1, PbMYB2 and 21 PbMYB6 5.4 High expression level of internal controls in dual-luciferase assay 21 5.5 The high expression of negative controls in yeast one-hybrid assay 22 6. CONCLUSION 23 7. PERSPECTIVES 24 8. REFERENECES 25 Table 1 29 Figure 1-12 31-46 Appendix Table 1 47 Appendix Figure 1-6 49-55

    Chen WH(陳文輝)(2007) 台灣如何成為蝴蝶蘭王國? 科學人雜誌 第69期
    Lee CS(李朝賢)(2002) An economic analysis of Phalaenopsis production in Taiwan. 農業經濟半年刊 71: 113-133
    Hsiao YY (蕭郁芸) (2008) Studies on the biosynthesis pathway and its related genes of Phalaenopsis bellina floral scent. 成功大學生命科學研究所博士論文
    Allan AC, Hellens RP and Laing WA (2008) MYB transcription factors that colour our fruit. Trends in Plant Science 13: 99-102
    Anton IA and Frampton J (1988) Tryptophans in MYB proteins. Nature 336: 719
    Berkov A, Meurer-Grimes B, and Purzycki KL (2000) Do Lecythidaceae specialists (Coleoptera, Cerambycidae) shun fetid tree species? BlOTROPlCA 32(3): 440-451
    Bogs J, Jaffé FW, Takos AM, Walker AR, and Robinson SP (2007) The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development. Plant Physiology 143: 1347–1361
    Chen YH, Yang XY, He K, Liu M, Li JG, Gao ZF, Lin ZQ, Zhang YF, Wang XX, Qiu XM, Shen YP, Zhang L, Deng XH, Luo JC, Deng XW, Chen ZL, Gu HY, and Qu LJ (2006) The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Molecular Biology 60: 107–124
    Chen YH, Wu XM, Ling HQ, and Yang WC (2006) Transgenic expression of DwMYB2 impairs iron transport from root to shoot in Arabidopsis thaliana. Cell Research 16: 830-840
    Chiou CY and Yeh KW (2008) Differential expression of MYB gene (OgMYB1) determines color patterning in floral tissue of Oncidium Gower Ramsey. Plant Molecular Biology 66: 379-388
    Christenson EA (2001) Ecology and distribution. Phalaenopsis a monograph Portland: Timber Press.
    Croteau R and Karp F (1991) Origin of natural odorants. In Perfume: Art, Science and Technology. P. Muller and D. Lamparsky, eds (New York: Elsevier Applied Sciences), pp. 101–126
    Dudareva N and Pichersky E (2000) Biochemical and molecular genetic aspects of floral scents. Plant Physiology 122: 627–633
    Dudareva N, Pichersky E and Gershenzon J (2004) Biochemistry of plant volatiles. Plant Physiology 135: 1893–1902
    Espley RV, Brendolise C, Chagné D, Kutty-Amma S, Green S, Volz R, Putterill J, Schouten HJ, Gardiner SE, Hellens RP, and Allan AC (2009) Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples. Plant Cell 21: 168-183
    Fenster CB, Armbruster WS, Wilson P, Dudash MR, and Thomson JD (2004) Pollination syndromes and floral specialization. Annual Review of Ecology Evolution and Systematics 35: 375–403
    Gonzalez A, Zhao M, Leavitt JM and Lloyd AM (2008) Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant Journal 53: 814–827
    Holton TA and Cornish EC (1995) Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7: 1071-1083
    Hsiao YY, Jeng MF, Tsai WC, Chuang YC, Li CY, Wu TS, Kuoh CS, Chen WH, and Chen HH (2008) A novel homodimeric geranyl diphosphate synthase from the orchid Phalaenopsis bellina lacking a DD(X)2-4D motif. Plant Journal 55: 719-733
    Hsiao YY, Tsai WC, Kuoh CS, Huang TH, Wang HC, Wu TS, Leu YL, Chen WH, and Chen HH (2006) Comparison of transcripts in Phalaenopsis bellina and Phalaenopsis equestris (Orchidaceae) flowers to deduce monoterpene biosynthesis pathway. BMC Plant Biology 6: 14
    Ito M (2005) Conservation and diversification of three-repeat Myb transcription factors in plants. Journal of Plant Research 118: 61-69
    Jackson D, Culianez-Macia F, Prescott AG, Roberts K, and Martin C (1991) Expression patterns of MYB genes from Antirrhinum flowers. Plant Cell 3: 115–125
    Kanei-Ishii C, Sarai A, Sawazaki T, Nakagoshi H, He DN, Ogata K, Nishimura Y, and Ishii S (1990) The tryptophan cluster: a hypothetical structure of the DNA-binding domain of the MYB protooncogene product. The Journal of Biological Chemistery 265: 19990-19995
    Klempnauer KH, Gonda TJ, and Bishop JM (1982) Nucleotide sequence of the retroviral leukemia gene v-MYB and its cellular progenitor c-MYB: the architecture of a transduced oncogene. Cell 31: 453–463
    Laule O, Fu‥rholz A, Chang H-S, Zhu T, Wang X, Heifetz PB, Gruissem W, and Lange M (2003) Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 100: 6866–6871
    Li X, Weng JK, and Chapple C (2008) Tailoring lignin for the improvement of forage, pulp, and biofuel: from genetics to genetic engineering. Plant Journal 54: 569–581
    Loreto F and Velikova V (2001) Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiology 127: 1781–1787
    Martin C and Paz-Ares J (1997) MYB transcription factors in plants. Trends in Genetics 13: 67-73
    Mattana M, Vannini C, Espen L, Bracale M, Genga A, Marsoni M, Iriti M, Bonazza V, Romagnoli F, Baldoni E, Coraggio I, and Locatelli F (2008) The rice MYB leu transcription factor increases tolerance to oxygen deprivation in Arabidopsis plants. Physiologia Plantarum 131: 106–121
    Moyano E, Martínez-Garcia JF, and Martin C (1996) Apparent redundancy in MYB gene function provides gearing for the control of flavonoid biosynthesis in Antirrhinum flowers. Plant Cell 8: 1519-32
    Ogata K, Morikawa S, Nakamura H, Hojo H, Yoshimura S, Zhang R, Aimoto S, Ametani Y, Hirata Z, Sarai A, Ishii S, and Nishinura Y (1995) Comparison of the free and DNA-complexed forms of the DNA-binding domain from c-MYB. Nature Structural Biology 2: 309-320
    O’Neill SD, Nadeau JA, Zhang XS, Bui AQ, and Halevy AH (1993) Interorgan regulation of ethylene biosynthetic genes by pollination. Plant Cell 5: 419–432.
    Paz-Ares J, Ghosal D, Wienand U, Peterson P, and Saedler H (1987) The regulatory c1 locus of Zea mays encodes a protein with homology to MYB oncogene products and with structural similarities to transcriptional activators. EMBO Journal 6: 3553–3558
    Pare PW and Tumlinson JH (1997) De novo biosynthesis of volatiles induced by insect herbivory in cotton plants. Plant Physiology 114: 1161-1167
    Pichersky E and Gershenzon J (2002) The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Current Opinion in Plant Biology 5: 237–243
    Roberts SC (2007) Production and engineering of terpenoids in plant cell culture. Nature Chemical Biology 3: 387-395
    Sablowski RWM, Moyano E, Culianez-Macia FA, Schuch W, Martin C, and Bevan M (1994) A flower-specific MYB protein activates transcription of phepylpropanoid biosynthetic genes. EMBO Journal 13: 128-137
    Sablowski RWM, Baulcornbe DC, and Bevan M (1995) Expression of a flower-specific MYB protein in leaf cells using aviral vector causes ectopic activation of a target promoter. Proc Natl Acad Sci USA 92: 6901-6905.
    Saikumar P, Murali R, and Reddy EP (1990) Role of Tryptophan Repeats and Flanking Amino Acids in MYB-DNA Interactions Proc Natl Acad Sci USA 87: 8452-8456
    Schuhr CA, Radykewicz T, Sagner S, Latzel C, Zenk MH, Arigoni D, Bacher A, Rohdich F, and Eisenreich W (2003) Quantitative assessment of crosstalk between the two isoprenoid biosynthesis pathways in plants by NMR spectroscopy. Phytochem Reviewa 2: 3–16

    Schwab W, Davidovich-Rikanati R, and Lewinsohn E (2008) Biosynthesis of plant-derived flavor compounds. Plant Journal 54: 712–732
    Sharkey TD, Chen XY and Yeh S (2001) Isoprene increases thermotolerance of fosmidomycin-fed leaves. Plant Physiology 125: 2001–2006
    Shulaev V, Silverman P, Raskin I (1997) Airborne signaling by methyl salicylate in plant pathogen resistance. Nature 385: 718-721
    Tanikawa J, Yasukawa T, Enari M, Ogata K, Nishimura Y, Ishii S, and Sarai A (1993) Recognition of specific DNA sequences by the c-MYB protooncogene product: role of three repeat units in the DNA-binding domain. Proc Natl Acad Sci USA 90: 9320-9324
    Thompson MA and Ramsay RG (1995) MYB: an old oncoprotein with new roles. Bioessays 17: 341-50
    Tsai WC, Kuoh CS, Chuang MH, Chen WH, and Chen HH (2004) Four DEF-Like MADS Box genes displayed distinct floral morphogenetic roles in Phalaenopsis Orchid. Plant and Cell Physiology 45(7): 831–844
    van de Pijl L and Dodson CH (1969) Their pollination and evolution. In Orchid flowers. (Fla, C.G. ed: Univ. Miami.)
    van Schie CC, Ament K, Schmidt A, Lange T, Haring MA, and Schuurink RC (2007) Geranyl diphosphate synthase is required for biosynthesis of gibberellins. Plant Journal 52: 752-762
    van Schie CC, Haring MA, and Schuurink RC (2006) Regulation of terpenoid and benzenoid production in flowers. Current Opinion in Plant Biology 9: 203–208
    Verdonk JC, Haring MA, van Tunen AJ, and Schuurink RC (2005) ODORANT1 regulates fragrance biosynthesis in petunia flowers. Plant Cell 17: 1612-1624
    Wu XM, Lim SH, and Yang WC (2003) Characterization, expression and phylogenetic study of R2R3-MYB genes in orchid. Plant Molecular Biology 51: 959-972
    Zimmermann IM, Heim MA, Weisshaar B, and Uhrig JF (2004) Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B-like BHLH proteins. Plant Journal 40: 22-34

    下載圖示 校內:2019-08-27公開
    校外:2019-08-27公開
    QR CODE