簡易檢索 / 詳目顯示

研究生: 黃郁仁
Huang, Yu-Ren
論文名稱: 智慧型電力網路與無線區域網路的共存機制之研究
Study on Coexistence of Smart Utility Networks and WLANs
指導教授: 陳曉華
Chen, Hsiao-Hwa
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 164
中文關鍵詞: 智慧型電力網路無線區域網路共存系統效能最小分開距離共存機制
外文關鍵詞: IEEE 802.15.4g, smart utility networks, WLANs, coexistence performance, minimum separation, coexistence mechanisms.
相關次數: 點閱:94下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 智慧型電網 (Smart Grid, SG) 是一個整合了電力網路、通訊技術與資訊科技的高效能電網。它的主要目的為將供電端到用戶端的所有設備,透過各種感測器進行串接,並收集各項回傳的用電資訊後,加以分析與判斷,以提升用電效率與可靠性。其中,智慧型電力網路 (Smart Utility Network, SUN) 採用了IEEE 802.15.4g標準並負責鄰里區域網路 (neighborhood area network, NAN) 之間電力系統通訊資料的傳遞。我們可以說智慧型電力網路在智慧型電網裡扮演了一個很重要的角色。

    由於IEEE 802.15.4g是一個新制定的標準並且工作在無須註冊的頻帶,因此IEEE 802.15.4g其它同樣工作在相同頻帶的IEEE無線標準如何共存並且不會互相衝突,將是一個重要的新課題。無線區域網路 (Wireless LAN, WLAN),也就是IEEE 802.11標準系列,是一套發展良好並且眾多人口使用的技術。由於無線區域網路裡的資料通常較為重要並且該標準已經先被制訂,智慧型電力網路必須在傳送訊息的同時,有效地避免影響無線區域網路.

    本論文分別利用誤碼率模型 (bit error rate calculation model) 以及實體層封包碰撞模型 (PHY packet collision model) 來評估當智慧型電力網路與無線區域網路工作在鄰近區域的相同頻帶時之共存系統效能。根據此兩種模型,我們也從其相關之理論分析以及模擬的結果中觀察出了智慧型電力網路與無線區域網路之間的最小分開距離 (minimum separation)。在此論文中,我們也探討了無線區域網路與智慧型電力網路的共存機制。首先我們先深入了解此兩種網路已有的共存機制,以便補強一些尚未考慮到的弱點。我們將通道機敏策略 (channel agility scheme) 應用至智慧型電力網路,讓智慧型電力網路能高成本效率地在避免干擾WLAN的情況下成功地傳輸流動在智慧型電網裡的資訊。此外,我們也提出了智慧型電力網路通道機敏策略 (SUN channel agility scheme),讓智慧型電力網路能夠更及時的避開無線區域網路的干擾,並且保有原先通道機敏策略的高成本效益。

    IEEE 802.15.4g smart utility networks (SUNs) task group, i.e., TG4g, founded in December 2008, was established to create a PHY amendment to IEEE 802.15.4 to provide a global standard that facilitates very large scale process control applications such as the utility smart grid network, which is capable of supporting large, geographically diverse networks.

    Since IEEE 802.15.4g is a newly-developed standard that operates in regionally available and license-exempt bands, the coexistence characteristics required by this new standard need to be addressed. The focus of SUNs are the elements that fit between existing standards, which may be used in the utility backbone and the in-premises process, industrial and home area network. In this context, the SUNs form part of a heterogeneous network, filling the gap between the wide area networks (WANs), industrial and consumer wireless local area networks (WLANs) and wireless personal area networks (WPANs). Therefore, it is essential to provide coexistence mechanisms that enable SUNs to coexist with other heterogeneous standards in the same license-exempt bands. Particularly, WLANs often carry critical data, so regulators should try hard to make SUNs be able to avoid interfering with WLANs.

    In this thesis, the coexistence impacts on the system performance of both SUNs and WLANs are evaluated by using bit error rate (BER) calculation model and PHY packet collision model. The values of minimum separation between SUNs and WLANs are observed according to the analytical and simulation results we obtained. Also, the coexistence mechanisms of SUNs and WLANs are explicitly studied. We will first introduce the inherent coexistence mechanisms specified in IEEE 802.15.4g; and then, we will implement the channel agility scheme into SUNs. We also propose the SUN channel agility scheme, which makes SUNs able to avoid the WLAN interference in a timely and cost-effective manner.

    Abstract i Acknowledgements iii Table of Contents v List of Tables ix List of Figures xv Acronyms and Abbreviations xxix Symbols and Notations xxxiii Dedication xxxvii 1 Introduction 1 1.1 Introduction to Smart Grid . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Thesis Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Preliminaries 9 2.1 Smart Utility Network . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.1 Characteristics of SUNs . . . . . . . . . . . . . . . . . . . . 9 2.1.2 Components and Network Topology . . . . . . . . . . . . . . 11 2.2 General Description of SUN PHY Modes . . . . . . . . . . . . . . . 13 2.2.1 MR-FSK Generic PHY Mechanism . . . . . . . . . . . . . . 14 2.2.2 Mode Switch Mechanism . . . . . . . . . . . . . . . . . . . . 15 2.2.3 Multi-PHY Management . . . . . . . . . . . . . . . . . . . . 15 2.3 On-Demand Solutions for Coexistence . . . . . . . . . . . . . . . . . 16 2.3.1 Decision of Interference Level . . . . . . . . . . . . . . . . . 16 2.3.1.1 Physical Layer . . . . . . . . . . . . . . . . . . . . 16 2.3.1.2 MAC Layer . . . . . . . . . . . . . . . . . . . . . . 17 2.3.2 Actions to Handle Interference . . . . . . . . . . . . . . . . . 17 2.3.2.1 Sharing in Frequency Domain . . . . . . . . . . . . 17 2.3.2.2 Sharing in Time Domain . . . . . . . . . . . . . . . 18 2.3.2.3 Sharing in Space Domain . . . . . . . . . . . . . . 18 3 Coexistence Issues 19 3.1 Coexistence of SUN and Other Wireless Networks . . . . . . . . . . 19 3.1.1 Regulatory Information of SUN . . . . . . . . . . . . . . . . 20 3.1.2 Dissimilar Systems Sharing the Same Band with SUN . . . . 21 3.1.2.1 2400-2483.5 MHz Band (Worldwide) . . . . . . . . 22 3.1.2.2 950-958 MHz Band (Japan) . . . . . . . . . . . . . 23 3.1.2.3 902-928 MHz Band (United States) . . . . . . . . . 24 3.1.2.4 863-870 MHz Band (Europe) . . . . . . . . . . . . 24 3.1.2.5 779-787 MHz Band (China) . . . . . . . . . . . . . 25 3.2 Coexistence Performance Evaluation . . . . . . . . . . . . . . . . . 25 3.2.1 3 PHY Modes of the SUN . . . . . . . . . . . . . . . . . . . 25 3.2.1.1 Parameters for SUN PHY Modes . . . . . . . . . . 25 3.2.1.2 BER Calculations for SUN PHY Modes . . . . . . 29 3.2.2 Modeling Coexisting Interference . . . . . . . . . . . . . . . 32 3.2.2.1 Interference Characteristics . . . . . . . . . . . . . 32 3.2.2.2 Analytical Model for BER Calculation . . . . . . . 32 3.2.2.3 Spectrum Factor . . . . . . . . . . . . . . . . . . . 35 3.2.2.4 Power Weighting . . . . . . . . . . . . . . . . . . . 36 3.2.2.5 Receiver-Based Interference Model . . . . . . . . . 37 3.2.2.6 Path Loss Model . . . . . . . . . . . . . . . . . . . 39 3.2.3 Coexistence Performance in 2400-2483.5 MHz Band . . . . . 42 3.2.3.1 Parameters for Coexistence Quantification . . . . . 43 3.2.3.1.1 PHY Modes and Related Parameters of Each Standard . . . . . . . . . . . . . . . 43 3.2.3.1.2 BER for PHY Modes in Respective 802 Standards . . . . . . . . . . . . . . . . . . 43 3.2.3.2 Coexistence Simulation Results . . . . . . . . . . . 49 3.2.3.2.1 SUN FSK 50 kbps Mode as Victim Receiver 49 3.2.3.2.2 SUN OFDM 100 kbps Mode as Victim Receiver . . . . . . . . . . . . . . . . . . . 50 3.2.3.2.3 SUN OQPSK 500 kbps Mode as Victim Receiver . . . . . . . . . . . . . . . . . . . 53 3.2.3.2.4 802.11 PHY Modes as Victim Receivers . 54 3.2.3.2.5 802.15 PHY Modes as Victim Receivers . 56 3.2.4 Coexistence Performance in 902-928 MHz Band . . . . . . . 58 3.2.4.1 Parameters for Coexistence Quantification . . . . . 58 3.2.4.1.1 PHY Modes and Related Parameters of Each Standard . . . . . . . . . . . . . . . 58 3.2.4.1.2 BER for PHY Modes in Respective 802 Standards . . . . . . . . . . . . . . . . . . 60 3.2.4.2 Coexistence Simulation Results . . . . . . . . . . . 62 3.2.4.2.1 SUN PHY Modes as Victim Receivers . . 62 3.2.4.2.2 802.15.4 PHY Modes as Victim Receivers 65 3.2.5 PER Calculation and Observation of Minimum Separation . 67 3.2.5.1 PER of Heterogeneous Systems in 2.4 GHz Band . 68 3.2.5.2 PER of Heterogeneous Systems in 915 MHz Band . 85 3.2.5.3 Summary of Minimum Separation . . . . . . . . . . 90 3.3 PHY Packet Collision Model . . . . . . . . . . . . . . . . . . . . . . 99 3.3.1 PER Analysis of SUN under WLAN Interference . . . . . . 101 3.3.2 PER Analysis of WLAN under SUN Interference . . . . . . 108 3.3.3 Coexistence Performance by PHY Packet Collision Model . . 112 3.3.3.1 SUN under WLAN Interference . . . . . . . . . . . 112 3.3.3.2 WLAN under SUN Interference . . . . . . . . . . . 117 3.3.4 Distance of Minimum Separation . . . . . . . . . . . . . . . 123 4 Coexistence Mechanisms 125 4.1 Inherent Coexistence Mechanisms . . . . . . . . . . . . . . . . . . . 125 4.1.1 Direct-Sequence Spread Spectrum . . . . . . . . . . . . . . . 127 4.1.2 Common Signaling Mode . . . . . . . . . . . . . . . . . . . . 127 4.1.2.1 Multi-PHY Management Scheme . . . . . . . . . . 127 4.1.2.2 Detailed MPM procedure . . . . . . . . . . . . . . 128 4.1.3 Start Frame Delimiter Detection . . . . . . . . . . . . . . . . 130 4.1.4 CSMA/CA . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 4.1.4.1 Channel Scan . . . . . . . . . . . . . . . . . . . . . 131 4.1.4.1.1 Energy Detection . . . . . . . . . . . . . . 132 4.1.4.1.2 Active Channel Scan . . . . . . . . . . . . 132 4.1.4.1.3 Passive Channel Scan . . . . . . . . . . . 132 4.1.4.1.4 Enhanced CSM Channel Scan . . . . . . . 133 4.1.4.2 Clear Channel Assessment . . . . . . . . . . . . . . 133 4.1.4.3 Link Quality Indicator . . . . . . . . . . . . . . . . 134 4.1.5 Guaranteed Time Slot . . . . . . . . . . . . . . . . . . . . . 134 4.1.6 Neighbor Network Capability . . . . . . . . . . . . . . . . . 134 4.1.7 Low Duty Cycle . . . . . . . . . . . . . . . . . . . . . . . . . 136 4.1.8 Low Transmission Power . . . . . . . . . . . . . . . . . . . . 136 4.1.9 Channel Alignment . . . . . . . . . . . . . . . . . . . . . . . 136 4.2 Transmit Power Control . . . . . . . . . . . . . . . . . . . . . . . . 137 4.3 Channel Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 4.3.1 Channel Allocation of SUN . . . . . . . . . . . . . . . . . . 140 4.3.2 Channel Allocation of WLAN . . . . . . . . . . . . . . . . . 142 4.3.3 SUN Channels without WLAN Activities . . . . . . . . . . . 145 4.3.4 Channel Agility Scheme . . . . . . . . . . . . . . . . . . . . 146 4.3.5 SUN Channel Agility Scheme . . . . . . . . . . . . . . . . . 150 5 Conclusions 153 5.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 5.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 A ISM Band 155 Bibliography 157

    [1] B. Hamilton and M. Summy, “Benefits of the Smart Grid,” Power and Energy Magazine, IEEE, vol. 9, no. 1, pp. 104 -102, January - February 2011.

    [2] B. Roberts and C. Sandberg, “The Role of Energy Storage in Development of Smart Grids,” Proceedings of the IEEE, vol. 99, no. 6, pp. 1139 -1144, June 2011.

    [3] S. Mohagheghi, J. Stoupis, Z. Wang, Z. Li, and H. Kazemzadeh, “Demand Response Architecture: Integration into the Distribution Management System,” in Smart Grid Communications (SmartGridComm), 2010 First IEEE International Conference on, October 2010, pp. 501-506.

    [4] V. Gungor, B. Lu, and G. Hancke, “Opportunities and Challenges of Wireless Sensor Networks in Smart Grid,” Industrial Electronics, IEEE Transactions on, vol. 57, no. 10, pp. 3557-3564, October 2010.

    [5] M. Erol-Kantarci and H. Mouftah, “Wireless Sensor Networks for Cost-Efficient Residential Energy Management in the Smart Grid,” Smart Grid, IEEE Transactions on, vol. 2, no. 2, pp. 314 -325, June 2011.

    [6] Z. Wang, A. Scaglione, and R. Thomas, “Generating Statistically Correct Random Topologies for Testing Smart Grid Communication and Control Networks,” Smart Grid, IEEE Transactions on, vol. 1, no. 1, pp. 28 -39, June 2010.

    [7] H. Gharavi and B. Hu, “Multigate Communication Network for Smart Grid,” Proceedings of the IEEE, vol. 99, no. 6, pp. 1028 -1045, June 2011.

    [8] Y.-J. Kim, M. Thottan, V. Kolesnikov, and W. Lee, “A Secure Decentralized Data-Centric Information Infrastructure for Smart Grid,” Communications Magazine, IEEE, vol. 48, no. 11, pp. 58 - 65, November 2010.

    [9] T. Jin and M. Mechehoul, “Ordering Electricity via Internet and its Potentials for Smart Grid Systems,” Smart Grid, IEEE Transactions on, vol. 1, no. 3, pp. 302 -310, December 2010.

    [10] E. Lightner and S. Widergren, “An Orderly Transition to a Transformed Electricity System,” Smart Grid, IEEE Transactions on, vol. 1, no. 1, pp. 3 -10, June 2010.

    [11] “Communications Requirements of Smart Grid Technologies,” October 2010.

    [12] “NIST Framework and Roadmap for Smart Grid Interoperability Standards,” January 2010.

    [13] C.-S. Sum, H. Harada, F. Kojima, Z. Lan, and R. Funada, “Smart Utility Networks in TV White Space,” Communications Magazine, IEEE, vol. 49, no. 7, pp. 132 -139, July 2011.

    [14] F. Kojima and H. Harada, “Long-Lived Smart Utility Network Management Using Modified IEEE 802.15.4 MAC,” in Communications Workshops (ICC), 2010 IEEE International Conference on, May 2010, pp. 1 - 5.

    [15] H. Gharavi and B. Hu, “Multigate Mesh Routing for Smart Grid Last Mile Communications,” in Wireless Communications and Networking Conference (WCNC), 2011 IEEE, March 2011, pp. 275 -280.

    [16] A. Sreesha, S. Somal, and I.-T. Lu, “Cognitive Radio Based Wireless Sensor Network Architecture for Smart Grid Utility,” in Systems, Applications and Technology Conference (LISAT), 2011 IEEE Long Island, May 2011, pp. 1-7.

    [17] W. Luan, D. Sharp, and S. Lancashire, “Smart Grid Communication Network Capacity Planning for Power Utilities,” in Transmission and Distribution Conference and Exposition, 2010 IEEE PES, April 2010, pp. 1 -4.

    [18] “IEEE Standard for Information Technology - Telecommunications and Information Exchange Between Systems - Local and Metropolitan Area Networks - Specific Requirements Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs),” IEEE Std 802.15.4-2006 (Revision of IEEE Std 802.15.4-2003), pp. 01-305, 2006.

    [19] C.-S. Sum, M. Rahman, Z. Lan, F. Kojima, R. Funada, and H. Harada, “Performance Analysis of Low Duty FSK System for Smart Utility Network,” in Wireless Communications and Networking Conference (WCNC), 2011 IEEE, March 2011, pp. 1568 - 1573.

    [20] C. Chiasserini and R. Rao, “Coexistence Mechanisms for Interference Mitigation in the 2.4-GHz ISM Band,” Wireless Communications, IEEE Transactions on, vol. 2, no. 5, pp. 964 - 975, September 2003.

    [21] G. Betta, D. Capriglione, L. Ferrigno, and G. Miele, “Experimental Investigation of the Electromagnetic Interference of ZigBee Transmitters on Measurement Instruments,” Instrumentation and Measurement, IEEE Transactionson, vol. 57, no. 10, pp. 2118 - 2127, October 2008.

    [22] Q. Pang and V. Leung, “Channel Clustering and Probabilistic Channel Visiting Techniques for WLAN Interference Mitigation in Bluetooth Devices,” Electromagnetic Compatibility, IEEE Transactions on, vol. 49, no. 4, pp. 914 - 923, November 2007.

    [23] S.-H. Lee and Y.-H. Lee, “Adaptive Frequency Hopping for Bluetooth Robust to WLAN Interference,” Communications Letters, IEEE, vol. 13, no. 9, pp. 628 -630, September 2009.

    [24] H. Yomo, P. Popovski, H. C. Nguyen, and R. Prasad, “Adaptive Frequency Rolling for Coexistence in the Unlicensed Band,” Wireless Communications, IEEE Transactions on, vol. 6, no. 2, pp. 598 -608, Feburary 2007.

    [25] S. Geirhofer, L. Tong, and B. Sadler, “Cognitive Medium Access: Constraining Interference Based on Experimental Models,” Selected Areas in Communications, IEEE Journal on, vol. 26, no. 1, pp. 95 -105, January 2008.

    [26] M. Haron, S. Syed-Yusof, N. Fisal, S. Syed-Ariffin, and A. Abdallah, “Performance Study of the Coexistence of Wireless Sensor Networks (WSN) and Wireless Local Area Networks (WLAN),” in Modeling Simulation, 2008. AICMS 08. Second Asia International Conference on, May 2008, pp. 475 -479.

    [27] “IEEE Standard for Information Technology - Telecommunications and Information Exchange Between Systems - Local and Metropolitan Area Networks - Specific Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,” IEEE Std 802.11-2007 (Revision of IEEE Std 802.11-1999), pp. C1-1184, 12 2007.

    [28] N. Golmie, Coexistence in Wireless Networks: Challenges and System-Level Solutions in the Unlicensed Bands. Cambridge University Press, 2006.

    [29] “IEEE Standard for Information Technology - Telecommunications and Information Exchange Between Systems - Local and Metropolitan Area Networks - Specific Requirements. - Part 15.1: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Wireless Personal Area Networks (WPANs),” IEEE Std 802.15.1-2005 (Revision of IEEE Std 802.15.1-2002), pp. 1-580, 2005.

    [30] “IEEE Standard for Information Technology - Telecommunications and Information Exchange Between Systems - Local and Metropolitan Area Networks - Specific Requirements Part 15.3: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Speci_cations for High Rate Wireless Personal Area Networks (WPANs),” IEEE Std 802.15.3-2003, pp. 1-315, 2003.

    [31] “IEEE Standard for Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs) Amendment 2: Alternative Physical Layer Extension to support one or more of the Chinese 314-316 MHz, 430-434 MHz, and 779-787 MHz bands,” IEEE Std 802.15.4c-2009 (Amendment to IEEE Std 802.15.4 - 2006), pp. c1-21, 17 2009.

    [32] “IEEE Standard for Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs) Amendment 3: Alternative Physical Layer Extension to support the Japanese 950 MHz bands,” IEEE Std 802.15.4d-2009 (Amendment to IEEE Std 802.15.4-2006), pp. 01-27, 17 2009.

    [33] “Unapproved Draft Revision for IEEE Standard for Information technology - Telecommunications and information exchange between systems – Local and metropolitan area networks-Specific requirements Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs) Amendment 4: Physical Layer Specifications for Low Data Rate Wireless Smart Metering Utility Networks,” IEEE Std P802.15.4g/D4, 2011.

    [34] F. Xiong, Digital Modulation Techniques, Second Edition (Artech House Telecommunications Library). Artech House Publishers, 2006.

    [35] M. K. Simon and M.-S. Alouini, Digital Communication over Fading Channels: A Unified Approach to Performance Analysis. Wiley-Interscience, 2000.

    [36] J. G. Proakis, Digital Communications. Mcgraw Hill Higher Education, 2000.

    [37] “IEEE Recommended Practice for Information Technology - Telecommunications and Information Exchange Between Systems - Local and Metropolitan Area Networks - Specific Requirements Part 15.2: Coexistence of Wireless Personal Area Networks With Other Wireless Devices Operating in Unlicensed Frequency Bands,” IEEE Std 802.15.2-2003, pp. 01-115, 2003.

    [38] S. Gilsic, Z. Nikolic, D. Pokrajac, and P. Leppanen, “Performance Enhancement of DSSS Systems: Two-Dimensional Interference Suppression,” Communications, IEEE Transactions on, vol. 47, no. 10, pp. 1549 -1560, October 1999.

    [39] J. S. Seybold, Introduction to RF Propagation. Wiley-Interscience, 2005.

    [40] T. S. Rappaport, Wireless Communications: Principles and Practice (2nd Edition). Prentice Hall, 2002.

    [41] “IEEE Standard for Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 5: Enhancements for Higher Throughput,” IEEE Std 802.11n-2009 (Amendment to IEEE Std 802.11-2007 as amended by IEEE Std 802.11k-2008, IEEE Std 802.11r-2008, IEEE Std 802.11y-2008, and IEEE Std 802.11w-2009), pp. c1-502, 29 2009.

    [42] V. Kumar and R. Kumar, “Performance Analysis of a Finite Word Length Implemented CCK Modem with Rake Receiver for WLAN System,” in Internet, 2005.The First IEEE and IFIP International Conference in Central Asia on, September 2005, p. 5 pp.

    [43] G. Durisi, J. Romme, and S. Benedetto, “A General Method for SER Computation of M-PAM and M-PPM UWB Systems for Indoor Multiuser Communications,” in Global Telecommunications Conference, 2003. GLOBECOM '03. IEEE, vol. 2, December 2003, pp. 734-738.

    [44] B. Hu and N. Beaulieu, “Comparison of Modulation Schemes and Rake Receiver Structures for UWB Systems on an IEEE 802.15.3 Indoor Channel,” in Global Telecommunications Conference, 2005. GLOBECOM '05. IEEE, vol. 6, 2005, pp. 3493-3497.

    [45] B. Sklar, Digital Communications: Fundamentals and Applications (2nd Edition). Prentice Hall, 2001.

    [46] S. Y. Shin, H. S. Park, S. Choi, and W. H. Kwon, “Packet Error Rate Analysis of ZigBee Under WLAN and Bluetooth Interferences,” Wireless Communications, IEEE Transactions on, vol. 6, no. 8, pp. 2825 -2830, August 2007.

    [47] S. Y. Shin, H. S. Park, and W. H. Kwon, “Mutual Interference Analysis of IEEE 802.15.4 and IEEE 802.11b,” Computer Networks, vol. 51, no. 12, pp. 3338 - 3353, 2007.

    [48] Q.Wang, X. Liu, W. Chen, L. Sha, and M. Caccamo, “Building Robust Wireless LAN for Industrial Control with the DSSS-CDMA Cell Phone Network Paradigm,” Mobile Computing, IEEE Transactions on, vol. 6, no. 6, pp. 706 - 719, June 2007.

    [49] J. He, Z. Tang, H.-H. Chen, and Q. Zhang, “An Accurate and Scalable Analytical Model for IEEE 802.15.4 Slotted CSMA/CA Networks,” Wireless Communications, IEEE Transactions on, vol. 8, no. 1, pp. 440 -448, January 2009.

    [50] J. W. Chong, D. K. Sung, and Y. Sung, “Cross-Layer Performance Analysis for CSMA/CA Protocols: Impact of Imperfect Sensing,” Vehicular Technology, IEEE Transactions on, vol. 59, no. 3, pp. 1100 -1108, March 2010.

    [51] C. Hsiang, A.-W. Chen, C.-J. Chang, B.-Y. Shih, and C.-Y. Chen, “Development of Mechanisms for MAC Channel Selection to Improve the Performance of IEEE 802.15.4 Beacon-enabled Network,” in Broadband Network and Multimedia Technology (IC-BNMT), 2010 3rd IEEE International Conference on, October 2010, pp. 598 -602.

    [52] J.-W. Kim, J. Kim, and D.-S. Eom, “Multi-dimensional Channel Management Scheme to Avoid Beacon Collision in LR-WPAN,” Consumer Electronics, IEEE Transactions on, vol. 54, no. 2, pp. 396 -404, May 2008.

    [53] J. Salt and H. Nguyen, “Performance Prediction for Energy Detection of Unknown Signals,” Vehicular Technology, IEEE Transactions on, vol. 57, no. 6, pp. 3900 -3904, November 2008.

    [54] F. F. Digham, M.-S. Alouini, and M. K. Simon, “On the Energy Detection of Unknown Signals Over Fading Channels,” Communications, IEEE Transactions on, vol. 55, no. 1, pp. 21 -24, jan. 2007.

    [55] H. Urkowitz, “Energy Detection of Unknown Deterministic Signals,” Proceedings of the IEEE, vol. 55, no. 4, pp. 523 - 531, April 1967.

    [56] J. Y. Ha, T. Kim, H. S. Park, S. Choi, and W. H. Kwon, “An Enhanced CSMA-CA Algorithm for IEEE 802.15.4 LR-WPANs,” Communications Letters, IEEE, vol. 11, no. 5, pp. 461 - 463, May 2007.

    [57] I. Ramachandran and S. Roy, “Clear Channel Assessment in Energy-constrained Wideband Wireless Networks,” Wireless Communications, IEEE, vol. 14, no. 3, pp. 70 -78, June 2007.

    [58] W.-K. Park, I. Han, and K.-R. Park, “ZigBee based Dynamic Control Scheme for Multiple Legacy IR Controllable Digital Consumer Devices,” Consumer Electronics, IEEE Transactions on, vol. 53, no. 1, pp. 172 -177, February 2007.

    [59] K. Watanabe, M. Ise, T. Onoye, H. Niwamoto, and I. Keshi, “An Energy-efficient Architecture of Wireless Home Network Based on MAC Broadcast and Transmission Power Control,” Consumer Electronics, IEEE Transactions on, vol. 53, no. 1, pp. 124 -130, February 2007.

    [60] J. Ma, M. Gao, Q. Zhang, and L. Ni, “Energy-Efficient Localized Topology Control Algorithms in IEEE 802.15.4-Based Sensor Networks,” Parallel and Distributed Systems, IEEE Transactions on, vol. 18, no. 5, pp. 711 -720, May 2007.

    [61] A. T. Hoang, Y.-C. Liang, D. Wong, Y. Zeng, and R. Zhang, “Opportunistic Spectrum Access for Energy-Constrained Cognitive Radios,” Wireless Communications, IEEE Transactions on, vol. 8, no. 3, pp. 1206 -1211, March 2009.

    [62] Y. Tachwali, F. Basma, and H. Refai, “Cognitive Radio Architecture for Rapidly Deployable Heterogeneous Wireless Networks,” Consumer Electronics, IEEE Transactions on, vol. 56, no. 3, pp. 1426 -1432, August 2010.

    [63] J. Shen, S. Liu, Y. Wang, G. Xie, H. Rashvand, and Y. Liu, “Robust Energy Detection in Cognitive Radio,” Communications, IET, vol. 3, no. 6, pp. 1016 -1023, June 2009.

    [64] J. A. Han, W. S. Jeon, and D. G. Jeong, “Energy-Efficient Channel Management Scheme for Cognitive Radio Sensor Networks,” Vehicular Technology, IEEE Transactions on, vol. 60, no. 4, pp. 1905 -1910, May 2011.

    [65] P. Yi, A. Iwayemi, and C. Zhou, “Developing ZigBee Deployment Guideline Under WiFi Interference for Smart Grid Applications,” Smart Grid, IEEE Transactions on, vol. 2, no. 1, pp. 110 -120, March 2011.

    無法下載圖示 校內:2016-09-02公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE