簡易檢索 / 詳目顯示

研究生: 洪培勛
Hong, Pei-Hsun
論文名稱: 金銅錯合物催化有機反應之量子化學研究
Quantum Mechanical Investigation of Some Organic Reactions Catalyzed by Copper or Gold Complexes
指導教授: 鄭沐政
Cheng, Mu-Jeng
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 47
中文關鍵詞: 密度泛函理論金銅錯合物二氟甲基化
外文關鍵詞: Difluoromethylation, bpyCu, Complex, Gaussian, Jagaur, Density Functional Theory
相關次數: 點閱:135下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文藉由計算化學方法密度泛函理論(Density Functional Theory,DFT),計算化學反應中具有選擇性的還原消去(Reductive Elimination)反應、以及金屬配位路徑的選擇性,探討決定反應的速率決定步驟(Rate Determining Step,RDS),動力學所需之活化能、產物熱力學之穩定性;由計算所得之結構與能量,討論選擇性的決定因素。本篇論文內容分成二個主題:

    第一個主題-銅催化試劑: C-CF2H鍵之選擇性生成:
    討論關於聯吡啶基銅(bpyCu(II),bipyridine Copper II)幫助催化二氟甲基化(Difluoromethylation)反應之路徑選擇性;過程中使用了二種類似卻有著不同配位基之化合物,結果發現二種催化劑皆得到相同產物,即使配位基中有Cl的銅催化試劑,也沒有氯化(Chlorination)的產物。在討論了自由基的反應路徑、Cu催化還原消去(Reductive Elimination)後,發現反應傾向先與催化劑進行反彈(Rebound)鍵結過程,此步驟活化能皆小於5 kcal/mol、且過渡態為介於開閉殼層之間(open-close shell)的特殊型態,此步驟也是反應選擇性的主因;而下ㄧ步的還原消去(Reductive Elimination)則是反應速率決定步驟(Rate Determining Step),進行二氟甲基化反應所需活化能較氯化反應之活化能低。探討其選擇性之原因,是因為Cu-Cl的鍵結電子能為61.6 kcal/mol、Cu-C的鍵結電子能為21.0 kcal/mol,二者鍵能相差近3倍,這也是反應不會進行氯化(Chlorination)反應的理由;本篇以理論計算,將實驗結果完整解釋及驗證機構可能性。 

    第二個主題-金錯合物之位向選擇性反應:
    討論關於金催化劑形成一錯合物的位向選擇,初始反應試劑R1結構中具有二反應位置,對於金試劑(R2)來說,二個位置都是有可能發生反應的,但產物僅得到X3。
    過程中,先將反應路徑進行計算,結果發現路徑中未有單一反應的決定因素,反應路徑大致上分成三步:R1與R2反應、R3的鍵結、甲基喹啉機團(methyl quino group)的離去;第一步無活化能,僅只有熱力學之產物位能高低,代表二條路徑皆可能有產物發生、第二步為R3的鍵結,此步為速率決定步驟(RDS),此步活化能皆大於15 kcal/mol,二者活化能差僅2.2 kcal/mol、而第三步的離去基,活化能差距僅1 kcal/mol,也不是決定整個反應的選擇性主因。因此假設,在X1與Y1之間有一過渡態TS-X1Y1幫助二條路徑的轉換,因為此過渡態之能量僅14.6 kcal/mol,比X路徑或Y路徑的任一過渡態都都還容易達到,進而使得選擇反應傾向沿著X路徑得到X3產物。利用假設並搭配計算,成功解釋了整個Au催化劑中,反應產物僅有X路徑之產物,也構築了整個完整的能量曲面。

    In organic chemistry, constructing mechanisms of the reactions is powerful to predict the selectivity. Density functional theory is a common and accurate method to form energy surface to understand the mechanisms of the organic reactions. This study separates into two parts.
    In the first part, the benzylic radical compound undergoes the rebound process with bis(difluoromethyl) bpyCu or Chloro difluoromethyl bpyCu to form copper complexes. After reductive elimination, the final products are collected from difluoromethylation, no products of chlorination. The reductive elimination is rate determining step (RDS) in this reactions. The probable reason of selectivity is that Cu-Cl bond strength (61.6 kcal/mol, electronic energy) is stronger than that of Cu-CF2H (21.0 kcal/mol).
    In the second part, the reagent including two triple-bond has two reactive sites, X and Y, and the gold reagent can select one to bind and get the two kinds of the final products after methyl quinoline N-oxide (R3) binding and methyl quinoline group leaving. We find that the transition state between X1 and Y1 is the important key to decide the only final product of the X-pathway. The energy barrier of the changing binding site (14.6 kcal/mol) is lower than undergoing next step, R3-binding, in pathway X (20.4 kcal/mol) or pathway Y (18.2 kcal/mol). Therefore, the binding site stays at the most stable compound (X1), and only the product of the pathway X is collected.

    第一章、緒論 1 一、理論計算 1 二、電子密度泛函理論(Density Functional Theory) 2 三、化學反應與量子化學之應用 3 1.動力學及熱力學選擇性 4 2.位向選擇性 6 第二章、應用實例 7 一、銅催化試劑:C-CF2H鍵之選擇性生成 7 1.簡介 7 2.研究動機 12 3.計算軟體與計算方法 13 4.結果與討論 14 (1)二氟甲基化(Difluoromethylation) 16 (2)選擇性:氯化(Chlorination)或二氟甲基化(Difluoromethylation) 19 (3)其他可能反應:Radical attack 22 (4)討論methyl chloro bpy-Cu試劑之Reductive Elimination選擇性 24 5.結論 25 二、金錯合物之位向選擇性反應 28 1.簡介 28 2.研究動機 29 3.計算軟體與計算方法 30 4.結果與討論 31 (1)金錯合物之鍵結位置 31 (2)pathway-X 路徑位能曲面 33 (3) pathway-Y 35 (4) X-pathway與Y-pathway之關聯性與選擇性 37 (5)最終選擇之路徑為Pathway-X 39 5.結論 39 第三章、結論 40 一、銅催化試劑:C-CF2H鍵之選擇性生成 40 二、金錯合物之位向選擇性反應 41 參考文獻 42

    1. Pauling, L. C., The theoretical prediction of the physical properties of many electron atoms and ions. Mole refraction, diamagnetic susceptibility, and extension in space. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 1927, 114 (767), 181-211.
    2. Longuet-Higgins, H. C., Robert Sanderson Mulliken, 7 June 1896-31 October 1986. The Royal Society London: 1990.
    3. Simões, A.; Gavroglu, K., Different legacies and common aims: Robert Mulliken, Linus Pauling and the origins of quantum chemistry. In Conceptual perspectives in quantum chemistry, Springer: 1997; pp 383-413.
    4. Chattaraj, P. K.; Fuentealba, P.; Gómez, B.; Contreras, R., Woodward− hoffmann rule in the light of the principles of maximum hardness and minimum polarizability: DFT and Ab initio SCF studies. Journal of the American Chemical Society 2000, 122 (2), 348-351.
    5. Ayers, P. W.; Morell, C.; De Proft, F.; Geerlings, P., Understanding the Woodward–Hoffmann rules by using changes in electron density. Chemistry–A European Journal 2007, 13 (29), 8240-8247.
    6. Kohn, W.; Sham, L. J., Self-consistent equations including exchange and correlation effects. Physical review 1965, 140 (4A), A1133.
    7. Hohenberg, P.; Kohn, W., Inhomogeneous electron gas. Physical review 1964, 136 (3B), B864.
    8. Hariharan, P. C.; Pople, J. A., The influence of polarization functions on molecular orbital hydrogenation energies. Theoretica chimica acta 1973, 28 (3), 213-222.
    9. Hehre, W. J.; Ditchfield, R.; Pople, J. A., Self—consistent molecular orbital methods. XII. Further extensions of Gaussian—type basis sets for use in molecular orbital studies of organic molecules. The Journal of Chemical Physics 1972, 56 (5), 2257-2261.
    10. Peng, Q.; Duarte, F.; Paton, R. S., Computing organic stereoselectivity–from concepts to quantitative calculations and predictions. Chemical Society Reviews 2016, 45 (22), 6093-6107.
    11. Myers, W.; Swiatecki, W., Nuclear properties according to the Thomas-Fermi model. Nuclear Physics A 1996, 601 (2), 141-167.
    12. Becke, A. D., A new mixing of Hartree–Fock and local density‐functional theories. The Journal of chemical physics 1993, 98 (2), 1372-1377.
    13. Fischer, C. F., Hartree--Fock method for atoms. A numerical approach. 1977.
    14. Slater, J. C., A simplification of the Hartree-Fock method. Physical review 1951, 81 (3), 385.
    15. Seifert, G.; Porezag, D.; Frauenheim, T., Calculations of molecules, clusters, and solids with a simplified LCAO‐DFT‐LDA scheme. International journal of quantum chemistry 1996, 58 (2), 185-192.
    16. Finazzi, E.; Di Valentin, C.; Pacchioni, G.; Selloni, A., Excess electron states in reduced bulk anatase TiO 2: comparison of standard GGA, GGA+ U, and hybrid DFT calculations. The Journal of chemical physics 2008, 129 (15), 154113.
    17. Ziesche, P.; Kurth, S.; Perdew, J. P., Density functionals from LDA to GGA. Computational materials science 1998, 11 (2), 122-127.
    18. Zhao, Y.; Truhlar, D. G., Benchmark databases for nonbonded interactions and their use to test density functional theory. Journal of Chemical Theory and Computation 2005, 1 (3), 415-432.
    19. Goerigk, L.; Grimme, S., Double‐hybrid density functionals. Wiley Interdisciplinary Reviews: Computational Molecular Science 2014, 4 (6), 576-600.
    20. Kozuch, S.; Martin, J. M., DSD-PBEP86: in search of the best double-hybrid DFT with spin-component scaled MP2 and dispersion corrections. Physical Chemistry Chemical Physics 2011, 13 (45), 20104-20107.
    21. Balcells, D.; Maseras, F., Computational approaches to asymmetric synthesis. New Journal of Chemistry 2007, 31 (3), 333-343.
    22. O’Connor, M. J.; Boblak, K. N.; Topinka, M. J.; Kindelin, P. J.; Briski, J. M.; Zheng, C.; Klumpp, D. A., Superelectrophiles and the effects of trifluoromethyl substituents. Journal of the American Chemical Society 2010, 132 (10), 3266-3267.
    23. Cernak, T.; Dykstra, K. D.; Tyagarajan, S.; Vachal, P.; Krska, S. W., The medicinal chemist's toolbox for late stage functionalization of drug-like molecules. Chemical Society Reviews 2016, 45 (3), 546-576.
    24. De Montellano, P. R. O., Cytochrome P450: structure, mechanism, and biochemistry. Springer Science & Business Media: 2005.
    25. Nagib, D. A.; MacMillan, D. W., Trifluoromethylation of arenes and heteroarenes by means of photoredox catalysis. Nature 2011, 480 (7376), 224.
    26. Shen, H.; Liu, Z.; Zhang, P.; Tan, X.; Zhang, Z.; Li, C., Trifluoromethylation of alkyl radicals in aqueous solution. Journal of the American Chemical Society 2017, 139 (29), 9843-9846.
    27. Paeth, M.; Carson, W.; Luo, J. H.; Tierney, D.; Cao, Z.; Cheng, M. J.; Liu, W., Copper‐Mediated Trifluoromethylation of Benzylic Csp3− H Bonds. Chemistry–A European Journal 2018, 24 (45), 11559-11563.
    28. Paeth, M.; Tyndall, S. B.; Chen, L.-Y.; Hong, J.-C.; Carson, W. P.; Liu, X.; Sun, X.; Liu, J.; Yang, K.; Hale, E. M., Csp3–Csp3 Bond-Forming Reductive Elimination from Well-Defined Copper (III) Complexes. Journal of the American Chemical Society 2019, 141 (7), 3153-3159.
    29. Bochevarov, A. D.; Harder, E.; Hughes, T. F.; Greenwood, J. R.; Braden, D. A.; Philipp, D. M.; Rinaldo, D.; Halls, M. D.; Zhang, J.; Friesner, R. A., Jaguar: A high‐performance quantum chemistry software program with strengths in life and materials sciences. International Journal of Quantum Chemistry 2013, 113 (18), 2110-2142.
    30. Gell-Mann, M., The Quark and the Jaguar: Adventures in the Simple and the Complex. Macmillan: 1995.
    31. Marten, B.; Kim, K.; Cortis, C.; Friesner, R. A.; Murphy, R. B.; Ringnalda, M. N.; Sitkoff, D.; Honig, B., New model for calculation of solvation free energies: correction of self-consistent reaction field continuum dielectric theory for short-range hydrogen-bonding effects. The Journal of Physical Chemistry 1996, 100 (28), 11775-11788.
    32. Tapia, O.; Goscinski, O., Self-consistent reaction field theory of solvent effects. Molecular Physics 1975, 29 (6), 1653-1661.
    33. Greening, L. A.; Greene, D. L.; Difiglio, C., Energy efficiency and consumption—the rebound effect—a survey. Energy policy 2000, 28 (6-7), 389-401.
    34. Schwank, J.; Winokur, P.; McWhorter, P.; Sexton, F.; Dressendorfer, P.; Turpin, D., Physical Mechanisms Contributing to Device" Rebound". IEEE Transactions on Nuclear Science 1984, 31 (6), 1434-1438.
    35. Sorrell, S.; Dimitropoulos, J., The rebound effect: Microeconomic definitions, limitations and extensions. Ecological Economics 2008, 65 (3), 636-649.
    36. Matouschek, A.; Fersht, A. R., Application of physical organic chemistry to engineered mutants of proteins: Hammond postulate behavior in the transition state of protein folding. Proceedings of the National Academy of Sciences 1993, 90 (16), 7814-7818.
    37. Arteca, G. A.; Tapia, O., Generalized electronic diabatic approach to structural similarity and the Hammond postulate. International Journal of Quantum Chemistry 2007, 107 (2), 382-395.
    38. Arteca, G. A.; Mezey, P. G., Molecular similarity and molecular shape changes along reaction paths: a topological analysis and consequences on the Hammond postulate. The Journal of Physical Chemistry 1989, 93 (12), 4746-4751.
    39. Agmon, N., Quantitative Hammond postulate. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics 1978, 74, 388-404.
    40. Wolf, W. J.; Winston, M. S.; Toste, F. D., Exceptionally fast carbon–carbon bond reductive elimination from gold (III). Nature chemistry 2014, 6 (2), 159.
    41. Winston, M. S.; Wolf, W. J.; Toste, F. D., Halide-dependent mechanisms of reductive elimination from gold (III). Journal of the American Chemical Society 2015, 137 (24), 7921-7928.
    42. Teschner, D.; Vass, E.; Hävecker, M.; Zafeiratos, S.; Schnörch, P.; Sauer, H.; Knop-Gericke, A.; Schlögl, R.; Chamam, M.; Wootsch, A., Alkyne hydrogenation over Pd catalysts: A new paradigm. Journal of Catalysis 2006, 242 (1), 26-37.
    43. Schrock, R. R.; Osborn, J. A., Catalytic hydrogenation using cationic rhodium complexes. II. The selective hydrogenation of alkynes to cis olefins. Journal of the American Chemical Society 1976, 98 (8), 2143-2147.
    44. Teschner, D.; Borsodi, J.; Wootsch, A.; Révay, Z.; Hävecker, M.; Knop-Gericke, A.; Jackson, S. D.; Schlögl, R., The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation. Science 2008, 320 (5872), 86-89.
    45. Yang, L.; Zhao, L.; Li, C.-J., Palladium-catalyzed direct oxidative Heck–Cassar–Sonogashira type alkynylation of indoles with alkynes under oxygen. Chemical Communications 2010, 46 (23), 4184-4186.
    46. Larock, R. C.; Yum, E. K., Synthesis of indoles via palladium-catalyzed heteroannulation of internal alkynes. Journal of the American Chemical Society 1991, 113 (17), 6689-6690.
    47. Giri, S. S.; Liu, R.-S., Gold-catalyzed [4+ 3]-and [4+ 2]-annulations of 3-en-1-ynamides with isoxazoles via novel 6π-electrocyclizations of 3-azahepta trienyl cations. Chemical science 2018, 9 (11), 2991-2995.
    48. Hsu, Y.-C.; Hsieh, S.-A.; Li, P.-H.; Liu, R.-S., Gold-catalyzed N, O-functionalization of 1, 4-diyn-3-ols with N-hydroxyanilines to form highly functionalized pyrrole derivatives. Chemical communications 2018, 54 (17), 2114-2117.
    49. Frisch, M. J.; Hratchian, H. P.; Nielsen, A. B., Gaussian 09: Programmer's Reference. gaussian: 2009.
    50. Bogachev, V. I., Gaussian measures. American Mathematical Soc.: 1998.
    51. Rasmussen, C. E. In Gaussian processes in machine learning, Summer School on Machine Learning, Springer: 2003; pp 63-71.
    52. Weedbrook, C.; Pirandola, S.; García-Patrón, R.; Cerf, N. J.; Ralph, T. C.; Shapiro, J. H.; Lloyd, S., Gaussian quantum information. Reviews of Modern Physics 2012, 84 (2), 621.

    下載圖示 校內:2024-01-10公開
    校外:2025-01-10公開
    QR CODE