簡易檢索 / 詳目顯示

研究生: 江俊杰
Chiang, Chun-Chieh
論文名稱: CD93重組蛋白之功能研究
Functional studies of CD93 recombinant proteins
指導教授: 吳華林
Wu, Hua-Lin
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 66
中文關鍵詞: 單核球細胞
外文關鍵詞: recombinant proteins
相關次數: 點閱:57下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • CD93 是一個表現在血管內皮細胞、單核球細胞、以及幹細胞表面的高度醣基化蛋白質。CD93 具有五個功能區域,分別為類凝集素區、五個重複的表皮生長因子區、黏液素區、穿膜區以及細胞內尾端。序列比對顯示CD93與凝血酶調節素 (thrombomodulin) 在老鼠與人類中皆有很高的結構同源性。先前研究已經證明在血液中可偵測到可溶性CD93,暗示可溶性CD93參與調控某些生理作用。本實驗室先前研究發現,CD93蛋白的第二及第三功能區(CD93D23)可誘發人類臍靜脈內皮細胞的爬行及增生,而在小鼠血管新生實驗中發現CD93D23可促進活體中的血管新生,暗示CD93是促進血管生長的因子。血管新生在傷口癒合的過程中扮演著支持細胞增生的重要角色,而糖尿病患者因血管新生作用異常導致創傷處的傷口癒合減弱。最近研究發現,在非肥胖型糖尿病小鼠血液內的可溶性CD93較正常小鼠低,然而CD93在糖尿病患者血管新生以及傷口癒合的角色並不清楚。為了進一步探討CD93在糖尿病患者血管新生以及傷口癒合扮演的角色,本論文首先製備了不同功能區域的CD93重組蛋白,包含CD93D23以及CD93D123。在細胞實驗中CD93D23及CD93蛋白的第一,二,三功能區(CD93D123)能促進人類臍靜脈內皮細胞在高血糖濃度環境下的增生以及爬行的能力,另外CD93D23以及CD93D123也可促進A7r5平滑肌細胞增生。在小鼠血管新生實驗中,CD93D23可在糖尿病小鼠中引起血管新生。另外,當外加CD93D23以及CD93D123可顯著改善糖尿病小鼠的傷口癒合。由以上結果可知CD93重組蛋白可藉由促進高血糖濃度下的血管新生而改善糖尿病小鼠的傷口癒合。

    CD93 is a transmebmrane protein expressed on endothelial cells, monocytes, neutrophils and stem cells. CD93 has five domains: N-terminal lectin-like domain (D1), repetitive epidermal growth factor (EGF)-like domain (D2), mucin-like domain (D3), transmembrane domain (D4) and cytoplasmic domain (D5). The result of sequence alignment shows high homology between CD93 and thrombomodulin, and both of them are conserved in human and mice. In previous study, soluble form of CD93 (sCD93) was found in human blood indicating that sCD93 might participate in some physiological processes. Our previous results showed that CD93 domain 2 and 3 (CD93D23) induced human umbilical vein endothelial cells migration and proliferation. In murine angiogenesis assay, CD93D23 stimulated angiogenesis in vivo. Wound angiogenesis is an important part of the proliferative phase of healing; diabetic patients display aberrant angiogenesis in various organs, with insufficient activity occurring in impaired wound healing including ulcers. Recent study has indicated that non-obese diabetic sera contained measurable levels of sCD93 at a slightly lower concentration compared to sera of B6 mice. However, the function of CD93 in wound healing process of diabetes is mostly unknown. To further investigate the role of CD93 in wound healing and angiogenesis of diabetic patient, we constructed different domains of CD93, including CD93D23 and CD93 domain 1, 2 and 3 (CD93D123). In vitro study showed that CD93D123 and CD93D23 had a significant enhancing effect on proliferation and migration of human umbilical vein endothelial cells under high glucose concentration. CD93D123 and CD93D23 could also enhance the proliferation of smooth muscle cell (A7r5) under normal glucose concentration. In murine angiogenesis assay, CD93D23 stimulated angiogenesis in diabetic mice. Besides, we demonstrated that treatment of CD93D123 and CD93D23 could significantly promote wound closure and recover wound contraction in the diabetic mice. Based on these observations, we concluded that CD93 recombinant proteins could improve wound healing processes of the diabetic mice by enhancing angiogenesis under high-glucose concentration. 

    中文摘要…………………………………………………………………………1 Abstract……………………………………………………………………………….…………………………2 Acknowledgment..........................................4 Abbreviation………………......................................7 Introduction………………………………………………………………………………………………….......9 Reagents………............................................19 Materials & Methods Cell culture…………………………………………………………………………………………………......23 Expression of recombinant CD93 with mammalian cell system………………….......................................…24 Purification of recombinant CD93.................................................25 SDS-polyacrylamide gel electrophoresis.………………………....…27 Western blot………………………………………………………............……………29 Diabetic mice induction……………………………..…………..........31 Measurement of mice blood glucose concentration……………….32 Cell proliferation assay…………………………………….....………………32 Diabetic mice angiogenesis assay.................................................33 Mouse skin wound healing and CD93D23 treatment............................................33 Scratch wound healing............................................…34 Animal care…………………………………………………………………………………………………....35 Results …………………………………………………………………………….……………………36 Discussion …………………………………………………………………………………………………...…40 References……………………………………………………………...................44 Figures & Legends ………………………………………………………………………….…….48 Appendices ……………………………………………………………………………………………......58 Resume……………………………………………………………………………………….……………...66

    [1] T.S. Kim, M. Park, R.R. Nepomuceno, G. Palmarini, S. Winokur, C.A. Cotman, U. Bengtsson, A.J. Tenner, Characterization of the murine homolog of C1qRP: identical cellular expression pattern, chromosomal location and functional activity of the human and murine C1qRP, Molecular Immunology 37 (2000) 377-389.
    [2] S. Christian, H. Ahorn, A. Koehler, F. Eisenhaber, H.-P. Rodi, P. Garin-Chesa, J.E. Park, W.J. Rettig, M.C. Lenter, Molecular Cloning and Characterization of Endosialin, a C-type Lectin-like Cell Surface Receptor of Tumor Endothelium, Journal of Biological Chemistry 276 (2001) 7408-7414.
    [3] P. Steinberger, A. Szekeres, S. Wille, J. Stöckl, N. Selenko, E. Prager, G. Staffler, O. Madic, H. Stockinger, W. Knapp, Identification of human CD93 as the phagocytic C1q receptor (C1qRp) by expression cloning, Journal of Leukocyte Biology 71 (2002) 133-140.
    [4] R.R. Nepomuceno, A.J. Tenner, C1qRP, the C1q Receptor That Enhances Phagocytosis, Is Detected Specifically in Human Cells of Myeloid Lineage, Endothelial Cells, and Platelets, The Journal of Immunology 160 (1998) 1929-1935.
    [5] M. Park, A.J. Tenner, Cell surface expression of C1qRP/CD93 is stabilized by O-glycosylation, Journal of Cellular Physiology 196 (2003) 512-522.
    [6] E.N. Guan, W.H. Burgess, S.L. Robinson, E.B. Goodman, K.J. McTigue, A.J. Tenner, Phagocytic cell molecules that bind the collagen-like region of C1q. Involvement in the C1q-mediated enhancement of phagocytosis, Journal of Biological Chemistry 266 (1991) 20345-20355.
    [7] S. Webster, M. Park, M. Fonseca, A. Tenner, Structural and functional evidence for microglial expression of C1qR(P), the C1q receptor that enhances phagocytosis, Journal of Leukocyte Biology 67 (2000) 109-116.
    [8] G.H. Danet, J.L. Luongo, G. Butler, M.M. Lu, A.J. Tenner, M.C. Simon, D.A. Bonnet, C1qRp defines a new human stem cell population with hematopoietic and hepatic potential, Proceedings of the National Academy of Sciences of the United States of America 99 (2002) 10441-10445.
    [9] E.P. McGreal, N. Ikewaki, H. Akatsu, B.P. Morgan, P. Gasque, Human C1qRp Is Identical with CD93 and the mNI-11 Antigen But Does Not Bind C1q, The Journal of Immunology 168 (2002) 5222-5232.
    [10] M.I. Fonseca, P.M. Carpenter, M. Park, G. Palmarini, E.L. Nelson, A.J. Tenner, C1qRP, a myeloid cell receptor in blood, is predominantly expressed on endothelial cells in human tissue, Journal of Leukocyte Biology 70 (2001) 793-800.
    [11] P.J. Norsworthy, L. Fossati-Jimack, J. Cortes-Hernandez, P.R. Taylor, A.E. Bygrave, R.D. Thompson, S. Nourshargh, M.J. Walport, M. Botto, Murine CD93 (C1qRp) Contributes to the Removal of Apoptotic Cells In Vivo but Is Not Required for C1q-Mediated Enhancement of Phagocytosis, The Journal of Immunology 172 (2004) 3406-3414.
    [12] O. Petrenko, A. Beavis, M. Klaine, R. Kittappa, I. Godin, I.R. Lemischka, The Molecular Characterization of the Fetal Stem Cell Marker AA4, Immunity 10 (1999) 691-700.
    [13] S.A.S.a.S.S.B. M.C. Greenlee, CD93 and Related Family Members: Their Role in Innate Immunity, Current Drug Targets (2008) 130-138.
    [14] Y.D. Dean, E.P. McGreal, H. Akatsu, P. Gasque, Molecular and Cellular Properties of the Rat AA4 Antigen, a C-type Lectin-like Receptor with Structural Homology to Thrombomodulin, Journal of Biological Chemistry 275 (2000) 34382-34392.
    [15] J. Arribas, A. Borroto, Protein Ectodomain Shedding, Chemical Reviews 102 (2002) 4627-4638.
    [16] S.S. Bohlson, R. Silva, M.I. Fonseca, A.J. Tenner, CD93 Is Rapidly Shed from the Surface of Human Myeloid Cells and the Soluble Form Is Detected in Human Plasma, The Journal of Immunology 175 (2005) 1239-1247.
    [17] C.-S. Shi, G.-Y. Shi, Y.-S. Chang, H.-S. Han, C.-H. Kuo, C. Liu, H.-C. Huang, Y.-J. Chang, P.-S. Chen, H.-L. Wu, Evidence of Human Thrombomodulin Domain as a Novel Angiogenic Factor, Circulation 111 (2005) 1627-1636.
    [18] R. Muñoz-Chápuli, A.R. Quesada, M. Ángel Medina, Angiogenesis and signal transduction in endothelial cells, Cellular and Molecular Life Sciences 61 (2004) 2224-2243.
    [19] 潘玟銨, 人類C1qRp/CD93重組蛋白之功能研究, 國立成功大學生物化學研究所碩士論文 (2006).
    [20] V. Falanga, Wound healing and its impairment in the diabetic foot, The Lancet 366 (2005) 1736-1743.
    [21] B. Hantash, Zhao, L., Knowles, J. & Lorenz, Adult and Fetal Wound Healing. Front Biosci, (2008).
    [22] P. Martin, Wound Healing--Aiming for Perfect Skin Regeneration, Science 276 (1997) 75-81.
    [23] F.H. Epstein, A.J. Singer, R.A.F. Clark, Cutaneous Wound Healing, New England Journal of Medicine 341 (1999) 738-746.
    [24] S.A. Eming, T. Krieg, J.M. Davidson, Gene therapy and wound healing, Clinics in Dermatology 25 79-92.
    [25] A.J.C. Singer, R.A., Cutaneous wound healing, N Engl J Med 341 (1999).
    [26] K.J. Rolfe, J. Richardson, C. Vigor, L.M. Irvine, A.O. Grobbelaar, C. Linge, A Role for TGF-[beta]1-Induced Cellular Responses during Wound Healing of the Non-Scarring Early Human Fetus?, J Invest Dermatol 127 (2007) 2656-2667.
    [27] C.M. Robson Martin, Cytokine Manipulation of The Wound, (2003).
    [28] D.L.D. Steed, Modifying the Wound Healing Response with Exogenous Growth Factors, (1998).
    [29] G.D. Winter, Formation of the Scab and the Rate of Epithelization of Superficial Wounds in the Skin of the Young Domestic Pig, Nature 193 (1962) 293-294.
    [30] N.N. Nissen, et al., Vascular Endothelial Growth Factor Mediates Angiogenic Activity During the Proliferative Phase of Wound Healing., Am J Pathol 152 (1998) 1445-1452.
    [31] J.C. Biol., Fibroblasts, Myofibroblasts, and Wound Contraction., 124 (1994) 401-404.
    [32] T.L. Sellaro, D. Hildebrand, Q. Lu, N. Vyavahare, M. Scott, M.S. Sacks, Effects of collagen fiber orientation on the response of biologically derived soft tissue biomaterials to cyclic loading, Journal of Biomedical Materials Research Part A 80A (2007) 194-205.
    [33] S.P. Bennett, G.D. Griffiths, A.M. Schor, G.P. Leese, S.L. Schor, Growth factors in the treatment of diabetic foot ulcers, British Journal of Surgery 90 (2003) 133-146.
    [34] W.B. Weil, Juvenile Diabetes Mellitus, New England Journal of Medicine 278 (1968) 829-831.
    [35] W.G. Feero, A.E. Guttmacher, M.I. McCarthy, Genomics, Type 2 Diabetes, and Obesity, New England Journal of Medicine 363 (2010) 2339-2350.
    [36] G.R. Lerman OZ, Armour M, Levine JP, Gurtner GC., Cellular dysfunction in the diabetic fibroblast: impairment in migration, vascular endothelial growth factor production, and response to hypoxia., Am J Pathol. 162 (2003 ) 303–312.
    [37] H. Galkowska, Wojewodzka, U., and Olszewski,, W.L., Chemokines, cytokines, and growth factors in keratinocytes and dermal endothelial cells in the margin of chronic diabetic foot ulcers, Wound Repair Regen. 14 (2006) 558–565.
    [38] I. Goren, Muller, E., Pfeilschifter, J., and Frank,, S., Severely impaired insulin signaling in chronic wounds of diabetic ob/ob mice: a potential role of tumor necrosis factor-alpha., Am. J. Pathol 168 (2006) 765–777.
    [39] R.D. Galiano, et al., Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow–derived cells., Am. J. Pathol. 164 (2004) 1935–1947.
    [40] K. Maruyama, et al., Decreased macrophage number and activation lead to reduced lymphatic vessel formation and contribute to impaired diabetic would healing., Am. J. Pathol. 170 (2007) 1178–1191.
    [41] N.S. Gibran, et al. , Diminished neuropeptide levels contribute to the impaired cutaneous healing response associated with diabetes mellitus., J. Surg. Res. 108 (2002.) 122–128.
    [42] R. Lobmann, et al. , Expression of matrixmetalloproteinases and their inhibitors in the wounds of diabetic and non-diabetic patients., Diabetologia. 45 (2002.) 1011–1016.
    [43] G. Zekavat, R. Mozaffari, V. Arias, S. Rostami, A. Badkerhanian, A. Tenner, K. Nichols, A. Naji, H. Noorchashm, A novel CD93 polymorphism in non-obese diabetic (NOD) and NZB/W F1 mice is linked to a CD4+ iNKT cell deficient state, Immunogenetics 62 (2010) 397-407.
    [44] N. Ali, V. Knaüper, Phorbol Ester-induced Shedding of the Prostate Cancer Marker Transmembrane Protein with Epidermal Growth Factor and Two Follistatin Motifs 2 Is Mediated by the Disintegrin and Metalloproteinase-17, Journal of Biological Chemistry 282 (2007) 37378-37388.
    [45] V.O. Liu ZJ, Hyperoxia, endothelial progenitor cell mobilization, and diabetic wound healing., (2008) 1869–1882.
    [46] B.L. Bruns AF, Walker JH, Ponnambalam S., VEGF-A-stimulated signalling in endothelial cells via a dual receptor tyrosine kinase system is dependent on co-ordinated trafficking and proteolysis., Biochem Soc Trans 37 (2009) 1193-1197.
    [47] J. Iwamoto, A. Seki, Y. Sato, H. Matsumoto, T. Takeda, J. Yeh, Vitamin K<sub>2</sub> Prevents Hyperglycemia and Cancellous Osteopenia in Rats with Streptozotocin-Induced Type 1 Diabetes, Calcified Tissue International (2010) 1-7.

    下載圖示 校內:2021-01-01公開
    校外:2021-01-01公開
    QR CODE