研究生: |
簡莉軒 Chien, Li-Hsuan |
---|---|
論文名稱: |
環氧樹脂/聚醚二胺混摻氧化矽球或聚離子液體複合膜之合成與其於鋰離子電池之應用 Synthesis of Epoxy resin/Polyetherdiamine Membranes Blended with Silica or Poly(ionic liquid) for Lithium Ion Batteries |
指導教授: |
郭炳林
Kuo, Ping-Lin |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 107 |
中文關鍵詞: | 鋰離子電池 、高分子電解質 、聚醚二胺 、氧化矽球 、離子液體 |
外文關鍵詞: | Lithium-ion battery, polymer electrolyte, polyetherdiamine, silica, ionic liquid |
相關次數: | 點閱:67 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究第一部分為利用溶膠-凝膠法製備奈米氧化矽球,並加入聚醚二胺與環氧樹脂交聯之高分子中,製備出含氧化矽球之交聯型高分子電解質膜,應用於鋰離子電池上。利用TEM觀察氧化矽球之粒徑約30~50 nm;由TGA及LOI結果可得知添加氧化矽球,因其熱穩定性高,使高分子膜的熱裂解溫度及耐燃性提高,可延緩燃燒效果;於電化學性質方面,添加氧化矽球之膠態電解質膜明顯發生氧化反應之電位可高達5.35 V,而離子傳導度於室溫下為5.1~7.0×10-4 S cm-1,高溫(80℃)時為2.5~2.9×10-3 S cm-1;於電池效能測試,添加10%氧化矽球之膠態高分子電解質膜有最佳效能,在不同充放電速率下,0.1 C放電電容量可達153 mAh g-1,5 C時仍可維持72 mAh g-1。
第二部分為合成四級銨鹽,並加入聚醚二胺與環氧樹脂交聯之高分子電解質中,利用FT-IR和1H NMR鑑定四級銨鹽的分子結構;由SEM觀察添加四級銨鹽之高分子膜其表面及截面型態,隨著四級銨鹽含量增加,表面皺褶有變多的趨勢,但過量四級銨鹽易導致部分聚集,且有裂痕產生;由LOI結果可得知添加四級銨鹽可使高分子膜的耐燃性增加,最高可達24%,相當於在一般大氣條件下不燃。於電化學性質方面,添加四級銨鹽之膠態電解質膜明顯發生氧化反應之電位可達5.2 V,其離子傳導度也隨著四級銨鹽含量增加而提高,於室溫下為7.7~8.1×10-4 S cm-1,高溫(80℃)時為3.6~4.4×10-3 S cm-1;於電池效能測試,添加70%四級銨鹽之膠態高分子電解質膜有最佳效能,0.1 C放電電容量可達152 mAh g-1,5 C時仍可維持78 mAh g-1。
由以上結果可歸納本實驗兩部分所製備之含氧化矽球及含四級銨鹽之交聯型高分子電解質膜具有良好的性質,使得其可具備扮演離子導體和隔離膜的角色,並可提高熱穩定性質,增加電池的安全性。
The first part of this study is preparation of Silica/Epoxy resin crosslinked with Polyetherdiamine for the polymer electrolyte membrane. The particle size of silica ranged from 30 to 50 nm by TEM analysis. The surface characterization of membranes were obtained by SEM, and the result indicates that silica was dispersed uniformly. From the TGA and LOI analysis, the result indicates the membrane has great thermal stability and it has improved flame resistance and hindered combustion. The electrochemical window of the membrane is up to 5.35 V. The ionic conductivity of polymer electrolytes ranged between 5.1~7.0×10-4 S cm-1 at room temperature, (2.54~2.93×10-3 S cm-1 at 80℃). For battery application, the capacities of the cell made of hybrid polymer electrolyte can be up to 153 mAh g-1 at 0.1 C and 72 mAh g-1 at 5 C.
The second part of this study is preparation of poly(ionic liquid)/Epoxy resin crosslinked with Polyetherdiamine for the polymer electrolyte membrane. Poly(ionic liquid) was characterized with FT-IR and 1H NMR analysis to confirm the chemical structure. From the surface characterization of membranes by SEM, the result shows that as the content of poly(ionic liquid) increased, the surface will become more wrinkled and winding. From the LOI analysis, the result indicates the membrane has great thermal stability with LOI = 24%. The hybrid polymer electrolyte has high electrochemical window up to 5.2 V, and its ionic conductivity increased increases when the content of poly(ionic liquid) increased. For battery application, the capacities of the cell made of hybrid polymer electrolyte can be up to 152 mAh g-1 at 0.1 C and 78 mAh g-1 at 5 C.
The advantageous properties of the polymer electrolyte membrane allow it to act as both an ionic conductor as well as a separator .
1.Batteries for Advanced Transportation Technologies (BATT)
2.J.-M. Tarascon, “Issues and challenges facing rechargeable lithium batteries”, (2001).
3.林育潤 and 陳金銘,“奈米複合材料技術在鋰離子電池負極材料之應用”, 工業材料雜誌, 215 87 (2004).
4.徐文月,“塗佈產業市場概況”, 工業材料雜誌, 235 83 (2006).
5.C. Sun, S. Rajasekhara, J. B. Goodenough, and F. Zhou,“Monodisperse Porous LiFePO4 Microspheres for a High Power Li-Ion Battery Cathode”, Journal of the American Chemical Society, 133[7] 2132-2135 (2011).
6.林振華 and 林振富, “充電式鋰離子電池-材料與應用”. 全華圖書股份有限公司, (2002).
7.J. Hajek, French Patent, 1949, 8, 10(1949).
8.D. W. Murphy, F. J. Di Salvo, J. N. Carides, and J. V. Waszczak,“Topochemical reactions of rutile related structures with lithium”, Materials Research Bulletin, 13[12] 1395-1402 (1978).
9.M. Armand, D. W. Murphy, J. Broadhead, B. C. H. Steele, 「Materials for Advanced Batteries」, Plenum press, New York, (1980), 145.
10.S. Basu, U. S. Patent, 4, 423(1983)125
11.M. M. Thackeray, W. I. F. David, P. G. Bruce, and J. B. Goodenough,“Lithium insertion into manganese spinels”, Materials Research Bulletin, 18[4] 461-472 (1983).
12.H. Abe, T. Murai, and K. Zaghib,“Vapor-grown carbon fiber anode for cylindrical lithium ion rechargeable batteries”, Journal of Power Sources, 77[2] 110-115 (1999).
13.曾國原, “合成奈米二氧化鈦修飾固態高分子電解質之鋰離子導電機制探討”. in. 國立台灣科技大學, 化學系, 2004.
14.詹勗忠, “含烯環狀酯類電解液添加劑對石墨材料表面結構及電池特性之影響研究”. in. 綠色能源科技研究所, 國立臺南大學, 2008.
15.L. Ji, Z. Lin, R. Zhou, Q. Shi, O. Toprakci, A. J. Medford, C. R. Millns, and X. Zhang,“Formation and electrochemical performance of copper/carbon composite nanofibers”, Electrochimica Acta, 55[5] 1605-1611 (2010).
16.K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B.Goodenough, “LixCoO2: A new cathode material for batteries of high energy density”, Materials Research Bulletin, 15[6] 783-789 (1980).
17.M. G. S. R. Thomas, P. G. Bruce, and J. B. Goodenough, “Lithium mobility in the layered oxide Li1−xCoO2”, Solid State Ionics, 17[1] 13-19 (1985).
18.R. V. Chebiam, A. M. Kannan, F. Prado, and A. Manthiram,“Comparison of the chemical stability of the high energy density cathodes of lithium-ion batteries”, Electrochemistry Communications, 3[11] 624-627 (2001).
19.R. V. Chebiam, F. Prado, and A. Manthiram,“Soft Chemistry Synthesis and Characterization of Layered Li1-xNi1-yCoyO2-δ (0 ≤ x ≤ 1 and 0 ≤ y ≤ 1)”, Chemistry of Materials, 13[9] 2951-2957 (2001).
20.Z. Liu, J. Scott Cronin, Y.-c. K. Chen-Wiegart, J. R. Wilson, K. J. Yakal-Kremski, J. Wang, K. T. Faber, and S. A. Barnett, “Three-dimensional morphological measurements of LiCoO2 and LiCoO2/Li(Ni1/3Mn1/3Co1/3)O2 lithium-ion battery cathodes”, Journal of Power Sources, 227[0] 267-274 (2013).
21.S.-H. Yang, C. Laurence, D. Claude, E. C. Nelson, and A. O. K. Michael,“Atomic resolution of lithium ions in LiCoO2”, Nature materials, 2[7] 464-467 (2003).
22.W. Li, J. N. Reimers, and J. R. Dahn,“In situ x-ray diffraction and electrochemical studies of Li1−xNiO2”, Solid State Ionics, 67[1–2] 123-130 (1993).
23.J. N. Reimers and J. R. Dahn,“Electrochemical and In Situ X‐Ray Diffraction Studies of Lithium Intercalation in LixCoO2”, Journal of The Electrochemical Society, 139[8] 2091-2097 (1992).
24.A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough,“Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries”, Journal of The Electrochemical Society, 144[4] (1997).
25.T.-F. Yi, L.-J. Jiang, J. Shu, C.-B. Yue, R.-S. Zhu, and H.-B. Qiao,“Recent development and application of Li4Ti5O12 as anode material of lithium ion battery”, Journal of Physics and Chemistry of Solids, 71[9] 1236-1242 (2010).
26.K. Xu,“Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries”, Chemical Reviews, 104[10] 4303-4418 (2004).
27.林素琴, “暗潮洶湧的競爭---NB電池產業發展分析”. in IEK分析報告, Vol. 9810. 工業技術研究院, 2009.
28.M. T. Weller, M. E. Brenchley, D. C. Apperley, and N. A. Davies,“Correlations between 27Al magic-angle spinning nuclear magnetic resonance spectra and the coordination geometry of framework aluminates”, Solid State Nuclear Magnetic Resonance, 3[2] 103-106 (1994).
29.K. Xu,“Nonaqueous liquid electrolytes for lithium-based rechargeable batteries”, Chem Rev, 104[10] 4303-4417 (2004).
30.“鋰離子電池原理與技術”. 五南圖書, (2010).
31.陳翁釧 and 謝登存, “鋰離子電池隔離膜(Separator)材料應用介紹”. in 工業材料, Vol. 215. 2004.
32.M. B. Armand,“Polymer electrolytes”, Annual Review of Materials Science, 16[1] 245-261 (1986).
33.D. E. Fenton, J. M. Parker, and P. V. Wright,“Complexes of alkali metal ions with poly(ethylene oxide)”, Polymer, 14[11] 589 (1973).
34.M. B. Armand, J. R. MacCallum, C. A. Vincent(Eds.), Polymer Electrolyte Reviews, (1987).
35.M. B. Armand, P. G. Bruce, M. Forsyth, B. Scrosati, and W. Wieczorek, “Polymer Electrolytes”, pp. 1-31. in Energy Materials. John Wiley & Sons, Ltd, 2011.
36.楊家諭,工業材料雜誌,第122 期,86 年2月.
37.M. A. Ratner and D. F. Shriver,“Ion transport in solvent-free polymers”, Chemical Reviews, 88[1] 109-124 (1988).
38.G. Feuillade and P. Perche,“Ion-conductive macromolecular gels and membranes for solid lithium cells”, J Appl Electrochem, 5[1] 63-69 (1975).
39.P. G. Bruce,“Structure and electrochemistry of polymer electrolytes”, Electrochimica Acta, 40[13–14] 2077-2085 (1995).
40.K. M. Abraham and M. Alamgir,“Room temperature polymer electrolytes and batteries based on them”, Solid State Ionics, 70–71, Part 1[0] 20-26 (1994).
41.K. M. Abraham and M. Alamgir,“Ambient temperature rechargeable polymer-electrolyte batteries”, Journal of Power Sources, 43[1–3] 195-208 (1993).
42.G. Feuillade and P. Perche,“Ion-conductive macromolecular gels and membranes for solid lithium cells”, J Appl Electrochem, 5[1] 63-69 (1975).
43.C. Berthier, W. Gorecki, M. Minier, M. B. Armand, J. M. Chabagno, and P. Rigaud,“Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts”, Solid State Ionics, 11[1] 91-95 (1983).
44.Y. Matsuo and J. Kuwano,“Ionic conductivity of poly(ethylene glycol)-LiCF3SO3-ultrafine SiO2 composite electrolytes: Effects of addition of the surfactant lithium dodecylsulfate”, Solid State Ionics, 79[0] 295-299 (1995).
45.E. Quartarone, C. Tomasi, P. Mustarelli, G. B. Appetecchi, and F. Croce,“Long-term structural stability of PMMA-based gel polymer electrolytes”, Electrochimica Acta, 43[10–11] 1435-1439 (1998).
46.M. Forsyth, J. Sun, D. R. Macfarlane, and A. J. Hill,“Compositional dependence of free volume in PAN/LiCF3SO3 polymer-in-salt electrolytes and the effect on ionic conductivity”, Journal of Polymer Science Part B: Polymer Physics, 38[2] 341-350 (2000).
47.J. E. Weston and B. C. H. Steele,“Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly(ethylene oxide) polymer electrolytes”, Solid State Ionics, 7[1] 75-79 (1982).
48.F. Capuano, F. Croce, B. Scrosati, J. Electrom. Soc, 138, (1991).
49.W. Wieczorek, P. Lipka, G. Żukowska, andH. Wyciślik,“Ionic Interactions in Polymeric Electrolytes Based on Low Molecular Weight Poly(ethylene glycol)s”, The Journal of Physical Chemistry B, 102[36] 6968-6974 (1998).
50.P. Raghavan, X. Zhao, J.-K. Kim, J. Manuel, G. S. Chauhan, J.-H. Ahn, and C. Nah,“Ionic conductivity and electrochemical properties of nanocomposite polymer electrolytes based on electrospun poly(vinylidene fluoride-co-hexafluoropropylene) with nano-sized ceramic fillers”, Electrochimica Acta, 54[2] 228-234 (2008).
51.H.-R. Jung, D.-H. Ju, W.-J. Lee, X. Zhang, and R. Kotek,“Electrospun hydrophilic fumed silica/polyacrylonitrile nanofiber-based composite electrolyte membranes”, Electrochimica Acta, 54[13] 3630-3637 (2009).
52.Y. Liao, C. Sun, S. Hu, and W. Li,“Anti-thermal shrinkage nanoparticles/polymer and ionic liquid based gel polymer electrolyte for lithium ion battery”, Electrochimica Acta, 89 461-468 (2013).
53.W.-l. Li, J.-j. Tang, and B.-t. Li,“Preparation and Characterization of Composite Microporous Gel Polymer Electrolytes Containing SiO2(Li+)”, Journal of Inorganic and Organometallic Polymers and Materials, 23[4] 831-838 (2013).
54.M. Walkowiak, A. Zalewska, T. Jesionowski, and M. Pokora,“Stability of poly(vinylidene fluoride-co-hexafluoropropylene)-based composite gel electrolytes with functionalized silicas”, Journal of Power Sources, 173[2] 721-728 (2007).
55.Y. H. Liao, M. M. Rao, W. S. Li, L. T. Yang, B. K. Zhu, R. Xu, and C. H. Fu,“Fumed silica-doped poly(butyl methacrylate-styrene)-based gel polymer electrolyte for lithium ion battery”, Journal of Membrane Science, 352[1-2] 95-99 (2010).