簡易檢索 / 詳目顯示

研究生: 鄧景鴻
Deng, Jing-Hong
論文名稱: 以膽紅素為模版材料之製備及吸脫附感測之探討
Preparation of alpha-bilirubin imprinted material and the investigation of adsorption/desorption for sensing
指導教授: 許梅娟
Syu, Mei-Jywan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 87
中文關鍵詞: 膽紅素石英微量晶體天秤分子模版高分子
外文關鍵詞: bilirubin, Molecularly imprinted polymer, Quartz crystal microbalance
相關次數: 點閱:131下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 分子模版高分子 (Molecularly imprinted polymer, MIP) 主要是將模版分子 (template) 、具有官能基的高分子單體和高比例的交聯劑,利用高度交聯聚合結果,將模版分子包埋在高分子結構中,高分子基材因此形成形狀大小和官能基與模版分子互補的辨識結構,對模版分子具有良好的辨識能力和選擇性,而且高分子材料擁有耐高溫、酸鹼和可在有機溶劑下使用的特點,因此分子模版高分子可以作為感測器的辨識元件。
    本實驗以膽紅素 (bilirubin) 當作模版分子、MAA為單體、EGDMA為交聯劑,以熱聚合的方式製備模版高分子顆粒,以掃瞄式電子顯微鏡和IR圖譜探討膽紅素模版高分子的各項物理特性,藉此鑑定膽紅素模版高分子之製備成功與否,以及其吸附和脫附之結果,藉由分別比較膽紅素模版高分子對相似物和血清中共存物質與膽紅素的吸附能力探討選擇性。以UV光聚合的方式製備模版高分子薄膜,結合石英微量晶體天秤 (quartz crystal microbalance, QCM) 的感測方式探討膽紅素模版高分子薄膜吸附的情形。

    Molecularly imprinted polymer (MIP) was prepared by mixing the functional monomer and the target template, biliruibin, with a high ratio of crosslinker. Bulk polymerization was carried out so that the polymer with a high degree of crosslinking was obtained. In this way, the template molecule, bilirubin was entrapped within the polymer matrix. The recognition sites’ shape and functional groups should be complementary to the templates. Hence, the polymer thus prepared could have good recognition and selection for the templates. In addition, the polymer could have the tolerance for operating at high temperatures, either acidic or basic, as well as organic solvent conditions. In this research, the MIP was applied to establish a sensing system for the detection of bilirubin.
    During the synthesis of MIP, bilirubin was used as the target template, MAA was the functional monomer and EGDMA was chosen as the crosslinker. Thermal polymerization was chosen to investigate the features of the MIP as well as the desorption and binding effect of the polymer while UV irradiation polymerization was chosen for the preparation of the MIP thin film. SEM and IR were applied to examine and identify the MIP being prepared. The binding specificity of the bilirubin imprinted polymer was also discussed by using the bilirubin analog and the compounds co-existing in the serum. Quartz crystal microbalance (QCM) was also used as the transducer to detect the signal caused by the adsorption of biliruibin onto the MIP film.

    目錄 表目錄 I 圖目錄 II 第一章緒論 1 1-1 感測器 1 1-2 分子模版 (Molecular imprinting) 的發展歷史 1 1-2-1 分子模版高分子的原理 2 1-2-2 分子模版高分子的製備 4 1-2-3 分子模版高分子的應用 4 1-3 石英晶體微量天平 (Quartz crystal microbalance, QCM) 6 1-4 膽紅素 (Bilirubin) 9 1-4-1 膽紅素的簡介 9 1-4-2 膽紅素濃度的量測 11 1-5 聚合材料的簡介 12 1-5-1 甲基丙烯酸 (Methacrylic acid, MAA) 12 1-5-2 乙二醇二甲基丙烯酸酯 (Ethylene glycol dimethacrylate, EGDMA) 13 1-5-3 2, 2-Azobisisobutyronitrile (AIBN) 14 1-6 聚合膽紅素模版高分子之原理 14 1-7 實驗目的 15 第二章 實驗方法 18 2-1 膽紅素的測定 18 2-1-1 以assay kits量測膽紅素濃度 18 2-1-2 以Jendrassik-Grof 法測定膽紅素濃度 18 2-2 膽紅素穩定性的探討 19 2-2-1 EDTA/NaOH和ascorbic acid/NaOH溶液pH值隨時間變化的 情形 19 2-2-2 分別以EDTA/NaOH和ascorbic acid/NaOH溶液配製膽紅素 溶液探討其pH值隨時間的變化 19 2-2-3 膽紅素溶於EDTA/NaOH溶液之吸光值在600 nm下隨著時間 的變化 19 2-3 膽紅素分子模版高分子的製備 19 2-4 膽紅素分子模版高分子的脫附 19 2-5 膽紅素分子模版高分子的吸附 20 2-6 單體和交聯劑比例對膽紅素分子模版高分子吸附之影響 20 2-7 比較熱聚合法和UV光聚合法製備之膽紅素模版高分子的 吸附情形 20 2-8 不同清洗次數對膽紅素分子模版高分子吸附的探討 20 2-9 不同pH值的清洗液對膽紅素模版高分子吸附的探討 22 2-10 不同pH值的膽紅素溶液對膽紅素模版高分子吸附的探討 22 2-11 膽紅素模版高分子選擇性的探討 22 2-11-1 單一成份溶液對膽紅素分子模版高分子選擇性的探討 22 2-11-2 兩成份混合溶液對膽紅素模版高分子選擇性的探討 23 2-12 膽紅素分子模版高分子薄膜的製備 23 2-12-1 石英晶片的前處理 23 2-12-2 石英金電極的修飾 24 2-12-3 分子模版薄膜的製備 24 2-13 膽紅素分子模版高分子薄膜的清洗和吸附 24 2-14 以不同硫醇修飾過之石英晶片金電極表面探討其對膽紅素 模版高分子薄膜吸附的影響 24 2-15 實驗藥品 32 2-16 實驗器材 34 第三章 結果與討論 35 3-1 膽紅素溶液穩定性的討論 35 3-2 膽紅素模版高分子的物性 39 3-2-1 膽紅素模版高分子的表面積和孔徑大小 39 3-2-2 紅外線吸收光譜 (FT-IR) 的鑑定 39 3-2-3 掃瞄電子顯微鏡 (SEM) 之圖相觀察 39 3-3 膽紅素模版高分子的清洗脫附和吸附 43 3-3-1 膽紅素模版高分子的清洗脫附 43 3-3-2 膽紅素模版高分子的吸附曲線 43 3-3-3 膽紅素模版高分子與PMAA的吸附比較 43 3-4 加熱法和UV法聚合膽紅素模版高分子對膽紅素吸附之影響 48 3-5 不同之單體/交聯劑比例對膽紅素模版高分子吸附之影響 49 3-6 不同清洗次數處理後的膽紅素模版高分子對吸附膽紅素之 影響 50 3-7 不同pH值之洗液對吸附和清洗脫附之影響 55 3-7-1 以不同pH值之EDTA/NaOH溶液清洗膽紅素模版高分子 對清洗脫附之影響 55 3-7-2 以不同pH值洗液清洗之膽紅素模版高分子對吸附膽紅素的 影響 55 3-7-3 以不同pH值洗液清洗之PMAA對膽紅素吸附的影響 55 3-8 不同pH值之膽紅素溶液的吸附 58 3-8-1 膽紅素模版高分子對膽紅素之吸附 58 3-8-2 PMAA對膽紅素之吸附 58 3-9 膽紅素分子模版選擇性的探討 62 3-9-1 單一成份溶液對膽紅素模版高分子選擇性的探討 62 3-9-2 膽紅素和其他物質的混合溶液對膽紅素模版高分子的吸附 選擇性探討 69 3-10 膽紅素模版高分子薄膜之物性 77 3-10-1 掃瞄電子顯微鏡 (SEM) 之圖相觀察 77 3-10-2 紅外線吸收光譜 (FT-IR) 的鑑定 77 3-11 不同硫醇修飾石英晶片金電極 80 3-12 膽紅素模版高分子薄膜的吸附探討 81 3-12-1 膽紅素模版高分子薄膜結合QCM於批次系統下之吸附 81 3-12-2 膽紅素模版高分子薄膜結合QCM於連續流動系統下之吸附 81 第四章 結論 83 參考文獻 84

    1. B. Sellergren, Molecularly Imprinted Polymers, Elseriver Science
    Publishers, U. K., pp. 3-9, 2001.
    2. G. Wulff, “Molecular imprinting in cross-linked Materials with the aid of
    molecular templates - a way towards artificial antibodies”, Angew. Chem.
    Int. Ed. Engl., 34, pp.1812-1832, 1995.
    3. K. Mosbach and O. Ramström, “The emerging technique of molecular imprinting
    and its future impact on biotechnology”, Bio/Technology, 14,
    pp.163-170,1996.
    4. F. Svec and J. M. Frechet, “Continuous rods of macroporous polymer as high
    performance liquid chromatography separation media”, Analytical Chemistry,
    64, pp. 820-822, 1992.
    5. K. Hosoya, K. Yoshizako, Y. Shirasu, K. Kimata and T. Araki, “Molecularly
    imprinted uniform-size polymer-based stationary phase for high performance
    liquid chromatography structural contribution of cross-linked polymer network
    on specific molecular recognition”, Journal of Chromatography A, 728, pp.
    139-147, 1996.
    6. R. J. Ansell and K. Mosbach, “Molecularly imprinted polymers by suspension
    polymerization in perfluorocarbon liquids, with emphasis on the influence of
    the porogenic solvent”, Journal of Chromatography A, 787, pp. 55-66, 1997.
    7. H. Y. Wang, T. Kobayashi and N. Fujii, “Molecular imprinting membrance
    prepared by phase inversion precipitation technique”, Langmuir, 12, pp.
    4850-4856, 1996.
    8. K. Hosoya, Y. Shirasu, K. Kimata and N. Tanaka, “Molecularly imprinted
    chiral stationary phase prepared with racemic template”, Analytical
    Chemistry, 70, pp. 943-945, 1998.
    9. L. Schweit, L. I. Andersson, “Molecular imprint-based stationary phases for
    capillary electrochromatography”, Journal of Chromatography A, 817, pp.
    5-13, 1998.
    10. D. Kriz, C. B. Kriz, L. I. Andersson and K. Mosbach, “Thin-layer
    chromatography based on the molecular imprinting technique”, Analytical
    Chemistry, 66, pp. 2636-2639, 1994.
    11. A. Zander, P. Findlay, T. Renner and B. Sellergren, “Analysis of nicotine
    and its oxidation products in nicotine chewing gum by a molecularly imprinted
    solid-phase extraction”, Analytical Chemistry, 70, pp. 3304-3314, 1998.
    12. K. Haupt, A. G. Mayes and K. Mosbach, “Herbicide assay using an imprinted
    polymer-based system analogous to competitive fluoroimmunoassays”,
    Analytical Chemistry, 70, pp. 3936-3939, 1998.
    13. M. E. Davis, A. Katz and W. R. Ahmad, “Rational catalyst design via
    imprinted nanostructured materials”, Chemistry of Materials, 8, pp.
    1820-1839, 1996.
    14. L. I. Andersson, C. F. Mandenius and K. Mosbach, “Studies on guest selective
    molecular recognition on an octadecyl silylated silicon surface using
    ellipsometry”, Tetrahedron Letters, 29, pp. 5437-5440, 1988.
    15. S. A. Piletsky, Y. P. Parhometz, N. V. Lavryk, T. L. Panastuk and A. V.
    El’skaya, “Sensors for low-weight organic molecules based on molecular
    imprinting technique”, Sensors and Actuators B, 18-19, pp. 629-631, 1994.
    16. D. Kriz and K. Mosbach, “Competitive amperometric morphine sensor based on
    an agarose immobilized molecularly imprinted polymer”, Analytica Chimica
    Acta, 300, pp. 71-75, 1995.
    17. D. Kriz, O. Ramström, A. Svensson and K. Mosbach, “Introducing biomimetic
    sensors based on molecularly imprinted polymers as recognition elements”,
    Analytical Chemistry, 67, pp. 2142-2144, 1995.
    18. M. R. Dakin and D. A. Buttry, “Electrochemical applications of the quartz
    crystal microbalance”, Analytical Chemistry, 61, pp. 1147A-1154A, 1989.
    19. C. K. O’Sullivan and G. G. Guilbault, “Commercial quartz crystal
    microbalances-theory and application”, Biosensors and Bioelectronics, 14,
    pp. 663-670, 1999.
    20. L. I. Andersson, C. F. Mandenius and K. Mosbach, “Studies on guest selective
    molecular recognition on an octadecyl silylated silicon surface using
    ellipsometry “, Terahedron Lett., 29, pp. 5437-5440, 1988.
    21. E. Hedborg, F. Winquist, I. Lundstrom, L. I. Andersoon and K. Mosbach, “Some
    studies of molecularly imprinted polymer membranes in combination with
    field-effect devices”, Sensor and Actuators A, 36-38, pp. 796-799, 1993.
    22. S. Kroger, A. P. F. Turner, K. Mosbach and K. Haupt, “Imprinted
    polymer-based sensor system for herbicides using differential-pulse
    voltammetry on screen-printed electrodes”, Analytical Chemistry, 71, pp.
    3698-3702, 1999.
    23. S. A. Piletsky, E. V. Piletskaya, A. V. Elgersma, K. Yano and L. Karube,
    “Artazine sensing by molecularly imprinted membranes”, Biosensors and
    Bioelectronics, 10, pp. 959-964, 1995.
    24. C. Malitesta, I. Losito and P. G. Zambonin, “Molecularly imprinted
    electrosynthesized polymers: new materials for biomimetic sensors”,
    Analytical Chemistry, 71, pp. 1366-1370, 1999.
    25. K. Haupt, K. Noworyta and W. Kutner, “Imprinted polymer-based acoustic
    sensor using a quartz crystal microbalance” Anal. Commun., 36, pp. 391-393,
    1999.
    26. R. Levi, S. Mcniven, S. A. Piletsky, S. H. Cheong, K. Yano and I. Karibe,
    “Optical detection of chloramphenicol using molecularly imprinted
    polymers”, Analytical Chemistry, 69, pp. 2017-2021, 1997.
    27. S. J. Martin, V. E. Granstaff and G. C. Frye, “Characterization of a quartz
    crystal microbalance with simultaneous mass and liquid loading”, Analytical
    Chemistry, 63, pp. 2272-2281, 1991.
    28. C. J. Percival, S. Stanley, M. Galle, A. Braithwaite, M. I. Newton, G. Mchale
    and W. Hayes, ”Molecular-imprinted, polymer-coated quartz crystal
    microbalances for the detection of terpenes”, Analytical Chemistry, 73, pp.
    4225-4228, 2001.
    29. J. D Wilson, E. Braunwald, K. J. Isselbacher, R. G. Petersdorf, J. B. Martin,
    A. S Fauci, R. K. Root, Harrison’s Principles of Internal Medicine,
    McGraw-Hill, Inc., New York, pp. 264-266, 1991.
    30. A. K. Tipton, D. A. Lightner and A. F. Mcdonagh, ”Synthesis and metabolism
    of the first thia-bilirubin”, Journal of Organic Chemistry, 66, pp.
    1832-1838, 2001.
    31. T. Dorner, B. Knipp and D. A. Lightner, “Heteronuclear noe analysis of
    bilirubin solution conformation and intramolecular hydrogen bonding”,
    Tetrahedron, 53, pp. 2697-2716, 1997.
    32. K. L. J. Vink, W. Schuurman and R. V. Gansewinket, “Direct spectrophotometry
    of bilirubin in serum of the newborn, with use of caffeine reagent”,
    Clinical Chemistry, 34, pp. 67-70, 1988.
    33. Y. Andreu, J. galban and S. D. Marcos, “Determination of direct-bilirubin by
    fluorimetric-enzymatic method based on bilirubin oxidase”, Fresenius Journal
    of Analytical Chemistry, 368, pp. 516-521, 2000.
    34. C. C. Kuenzle, M. Sommerhalder and J. R. Ruttner, “Separation and
    quantitative estimation of four bilirubin fractions from serum and of three
    bilirubin fractions from bile”, The Journal of Laboratory and Clinical
    Medicine, 67, pp. 282-293, 1966.
    35. J.J. Lauff, M. E. Kasper, “Separation of bilirubin species in serum and bile
    by high performance reversed-phase liquid chromatography”, Journal of
    Chromatography, 226, pp. 391-402, 1982.
    36. B. T. Doumas, B. W. Perry, E. A. Sasse and J. V. Straumfjord, Jr.,
    “Standardization in bilirubin assays: evaluation of selected methods and
    stability of bilirubin solutions”, Clinical Chemistry, 19, pp. 948-993,
    1997.
    37. T. W. Wu, G. M. Dappen and D. M. Powers, “The Kodak Ektachem clinical
    chemistry slide for measurement of bilirubin in newborns: principles and
    performance,” Clinical Chemistry, 28, pp. 2366-2371, 1982.
    38. M. J. Whitcombe, M. E. Rodriguez, P. Villar and E. N. Vulfson, “A new method
    for the introduction of recognition site functionality into polymers prepared
    by molecular imprinting: synthesis and characterization of polymeric
    receptors of cholesterol”, Journal of the American Chemical Society, 147,
    pp. 7105-7111, 1995.
    39. J. Fog, “Stability of bilirubin”, Nature, 203, pp. 756-757, 1964.

    下載圖示 校內:2008-07-04公開
    校外:2008-07-04公開
    QR CODE