| 研究生: |
鄧景鴻 Deng, Jing-Hong |
|---|---|
| 論文名稱: |
以膽紅素為模版材料之製備及吸脫附感測之探討 Preparation of alpha-bilirubin imprinted material and the investigation of adsorption/desorption for sensing |
| 指導教授: |
許梅娟
Syu, Mei-Jywan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 膽紅素 、石英微量晶體天秤 、分子模版高分子 |
| 外文關鍵詞: | bilirubin, Molecularly imprinted polymer, Quartz crystal microbalance |
| 相關次數: | 點閱:131 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
分子模版高分子 (Molecularly imprinted polymer, MIP) 主要是將模版分子 (template) 、具有官能基的高分子單體和高比例的交聯劑,利用高度交聯聚合結果,將模版分子包埋在高分子結構中,高分子基材因此形成形狀大小和官能基與模版分子互補的辨識結構,對模版分子具有良好的辨識能力和選擇性,而且高分子材料擁有耐高溫、酸鹼和可在有機溶劑下使用的特點,因此分子模版高分子可以作為感測器的辨識元件。
本實驗以膽紅素 (bilirubin) 當作模版分子、MAA為單體、EGDMA為交聯劑,以熱聚合的方式製備模版高分子顆粒,以掃瞄式電子顯微鏡和IR圖譜探討膽紅素模版高分子的各項物理特性,藉此鑑定膽紅素模版高分子之製備成功與否,以及其吸附和脫附之結果,藉由分別比較膽紅素模版高分子對相似物和血清中共存物質與膽紅素的吸附能力探討選擇性。以UV光聚合的方式製備模版高分子薄膜,結合石英微量晶體天秤 (quartz crystal microbalance, QCM) 的感測方式探討膽紅素模版高分子薄膜吸附的情形。
Molecularly imprinted polymer (MIP) was prepared by mixing the functional monomer and the target template, biliruibin, with a high ratio of crosslinker. Bulk polymerization was carried out so that the polymer with a high degree of crosslinking was obtained. In this way, the template molecule, bilirubin was entrapped within the polymer matrix. The recognition sites’ shape and functional groups should be complementary to the templates. Hence, the polymer thus prepared could have good recognition and selection for the templates. In addition, the polymer could have the tolerance for operating at high temperatures, either acidic or basic, as well as organic solvent conditions. In this research, the MIP was applied to establish a sensing system for the detection of bilirubin.
During the synthesis of MIP, bilirubin was used as the target template, MAA was the functional monomer and EGDMA was chosen as the crosslinker. Thermal polymerization was chosen to investigate the features of the MIP as well as the desorption and binding effect of the polymer while UV irradiation polymerization was chosen for the preparation of the MIP thin film. SEM and IR were applied to examine and identify the MIP being prepared. The binding specificity of the bilirubin imprinted polymer was also discussed by using the bilirubin analog and the compounds co-existing in the serum. Quartz crystal microbalance (QCM) was also used as the transducer to detect the signal caused by the adsorption of biliruibin onto the MIP film.
1. B. Sellergren, Molecularly Imprinted Polymers, Elseriver Science
Publishers, U. K., pp. 3-9, 2001.
2. G. Wulff, “Molecular imprinting in cross-linked Materials with the aid of
molecular templates - a way towards artificial antibodies”, Angew. Chem.
Int. Ed. Engl., 34, pp.1812-1832, 1995.
3. K. Mosbach and O. Ramström, “The emerging technique of molecular imprinting
and its future impact on biotechnology”, Bio/Technology, 14,
pp.163-170,1996.
4. F. Svec and J. M. Frechet, “Continuous rods of macroporous polymer as high
performance liquid chromatography separation media”, Analytical Chemistry,
64, pp. 820-822, 1992.
5. K. Hosoya, K. Yoshizako, Y. Shirasu, K. Kimata and T. Araki, “Molecularly
imprinted uniform-size polymer-based stationary phase for high performance
liquid chromatography structural contribution of cross-linked polymer network
on specific molecular recognition”, Journal of Chromatography A, 728, pp.
139-147, 1996.
6. R. J. Ansell and K. Mosbach, “Molecularly imprinted polymers by suspension
polymerization in perfluorocarbon liquids, with emphasis on the influence of
the porogenic solvent”, Journal of Chromatography A, 787, pp. 55-66, 1997.
7. H. Y. Wang, T. Kobayashi and N. Fujii, “Molecular imprinting membrance
prepared by phase inversion precipitation technique”, Langmuir, 12, pp.
4850-4856, 1996.
8. K. Hosoya, Y. Shirasu, K. Kimata and N. Tanaka, “Molecularly imprinted
chiral stationary phase prepared with racemic template”, Analytical
Chemistry, 70, pp. 943-945, 1998.
9. L. Schweit, L. I. Andersson, “Molecular imprint-based stationary phases for
capillary electrochromatography”, Journal of Chromatography A, 817, pp.
5-13, 1998.
10. D. Kriz, C. B. Kriz, L. I. Andersson and K. Mosbach, “Thin-layer
chromatography based on the molecular imprinting technique”, Analytical
Chemistry, 66, pp. 2636-2639, 1994.
11. A. Zander, P. Findlay, T. Renner and B. Sellergren, “Analysis of nicotine
and its oxidation products in nicotine chewing gum by a molecularly imprinted
solid-phase extraction”, Analytical Chemistry, 70, pp. 3304-3314, 1998.
12. K. Haupt, A. G. Mayes and K. Mosbach, “Herbicide assay using an imprinted
polymer-based system analogous to competitive fluoroimmunoassays”,
Analytical Chemistry, 70, pp. 3936-3939, 1998.
13. M. E. Davis, A. Katz and W. R. Ahmad, “Rational catalyst design via
imprinted nanostructured materials”, Chemistry of Materials, 8, pp.
1820-1839, 1996.
14. L. I. Andersson, C. F. Mandenius and K. Mosbach, “Studies on guest selective
molecular recognition on an octadecyl silylated silicon surface using
ellipsometry”, Tetrahedron Letters, 29, pp. 5437-5440, 1988.
15. S. A. Piletsky, Y. P. Parhometz, N. V. Lavryk, T. L. Panastuk and A. V.
El’skaya, “Sensors for low-weight organic molecules based on molecular
imprinting technique”, Sensors and Actuators B, 18-19, pp. 629-631, 1994.
16. D. Kriz and K. Mosbach, “Competitive amperometric morphine sensor based on
an agarose immobilized molecularly imprinted polymer”, Analytica Chimica
Acta, 300, pp. 71-75, 1995.
17. D. Kriz, O. Ramström, A. Svensson and K. Mosbach, “Introducing biomimetic
sensors based on molecularly imprinted polymers as recognition elements”,
Analytical Chemistry, 67, pp. 2142-2144, 1995.
18. M. R. Dakin and D. A. Buttry, “Electrochemical applications of the quartz
crystal microbalance”, Analytical Chemistry, 61, pp. 1147A-1154A, 1989.
19. C. K. O’Sullivan and G. G. Guilbault, “Commercial quartz crystal
microbalances-theory and application”, Biosensors and Bioelectronics, 14,
pp. 663-670, 1999.
20. L. I. Andersson, C. F. Mandenius and K. Mosbach, “Studies on guest selective
molecular recognition on an octadecyl silylated silicon surface using
ellipsometry “, Terahedron Lett., 29, pp. 5437-5440, 1988.
21. E. Hedborg, F. Winquist, I. Lundstrom, L. I. Andersoon and K. Mosbach, “Some
studies of molecularly imprinted polymer membranes in combination with
field-effect devices”, Sensor and Actuators A, 36-38, pp. 796-799, 1993.
22. S. Kroger, A. P. F. Turner, K. Mosbach and K. Haupt, “Imprinted
polymer-based sensor system for herbicides using differential-pulse
voltammetry on screen-printed electrodes”, Analytical Chemistry, 71, pp.
3698-3702, 1999.
23. S. A. Piletsky, E. V. Piletskaya, A. V. Elgersma, K. Yano and L. Karube,
“Artazine sensing by molecularly imprinted membranes”, Biosensors and
Bioelectronics, 10, pp. 959-964, 1995.
24. C. Malitesta, I. Losito and P. G. Zambonin, “Molecularly imprinted
electrosynthesized polymers: new materials for biomimetic sensors”,
Analytical Chemistry, 71, pp. 1366-1370, 1999.
25. K. Haupt, K. Noworyta and W. Kutner, “Imprinted polymer-based acoustic
sensor using a quartz crystal microbalance” Anal. Commun., 36, pp. 391-393,
1999.
26. R. Levi, S. Mcniven, S. A. Piletsky, S. H. Cheong, K. Yano and I. Karibe,
“Optical detection of chloramphenicol using molecularly imprinted
polymers”, Analytical Chemistry, 69, pp. 2017-2021, 1997.
27. S. J. Martin, V. E. Granstaff and G. C. Frye, “Characterization of a quartz
crystal microbalance with simultaneous mass and liquid loading”, Analytical
Chemistry, 63, pp. 2272-2281, 1991.
28. C. J. Percival, S. Stanley, M. Galle, A. Braithwaite, M. I. Newton, G. Mchale
and W. Hayes, ”Molecular-imprinted, polymer-coated quartz crystal
microbalances for the detection of terpenes”, Analytical Chemistry, 73, pp.
4225-4228, 2001.
29. J. D Wilson, E. Braunwald, K. J. Isselbacher, R. G. Petersdorf, J. B. Martin,
A. S Fauci, R. K. Root, Harrison’s Principles of Internal Medicine,
McGraw-Hill, Inc., New York, pp. 264-266, 1991.
30. A. K. Tipton, D. A. Lightner and A. F. Mcdonagh, ”Synthesis and metabolism
of the first thia-bilirubin”, Journal of Organic Chemistry, 66, pp.
1832-1838, 2001.
31. T. Dorner, B. Knipp and D. A. Lightner, “Heteronuclear noe analysis of
bilirubin solution conformation and intramolecular hydrogen bonding”,
Tetrahedron, 53, pp. 2697-2716, 1997.
32. K. L. J. Vink, W. Schuurman and R. V. Gansewinket, “Direct spectrophotometry
of bilirubin in serum of the newborn, with use of caffeine reagent”,
Clinical Chemistry, 34, pp. 67-70, 1988.
33. Y. Andreu, J. galban and S. D. Marcos, “Determination of direct-bilirubin by
fluorimetric-enzymatic method based on bilirubin oxidase”, Fresenius Journal
of Analytical Chemistry, 368, pp. 516-521, 2000.
34. C. C. Kuenzle, M. Sommerhalder and J. R. Ruttner, “Separation and
quantitative estimation of four bilirubin fractions from serum and of three
bilirubin fractions from bile”, The Journal of Laboratory and Clinical
Medicine, 67, pp. 282-293, 1966.
35. J.J. Lauff, M. E. Kasper, “Separation of bilirubin species in serum and bile
by high performance reversed-phase liquid chromatography”, Journal of
Chromatography, 226, pp. 391-402, 1982.
36. B. T. Doumas, B. W. Perry, E. A. Sasse and J. V. Straumfjord, Jr.,
“Standardization in bilirubin assays: evaluation of selected methods and
stability of bilirubin solutions”, Clinical Chemistry, 19, pp. 948-993,
1997.
37. T. W. Wu, G. M. Dappen and D. M. Powers, “The Kodak Ektachem clinical
chemistry slide for measurement of bilirubin in newborns: principles and
performance,” Clinical Chemistry, 28, pp. 2366-2371, 1982.
38. M. J. Whitcombe, M. E. Rodriguez, P. Villar and E. N. Vulfson, “A new method
for the introduction of recognition site functionality into polymers prepared
by molecular imprinting: synthesis and characterization of polymeric
receptors of cholesterol”, Journal of the American Chemical Society, 147,
pp. 7105-7111, 1995.
39. J. Fog, “Stability of bilirubin”, Nature, 203, pp. 756-757, 1964.