簡易檢索 / 詳目顯示

研究生: 游宗憲
Yu, Tsung-Hsien
論文名稱: 利用雷射蝕刻與化學濕式蝕刻改善氮化銦鎵-基發光二極體之光輸出功率與光伏特性之研究
Improving Light Output Power and Photovoltaic Performance of Thin-film Flip-chip InGaN-based Light-emitting Diodes Through KrF Laser Etching and Chemical Etching
指導教授: 王水進
Wang, Shui-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 96
中文關鍵詞: 發光二極體InGaN-基太陽電池KrF準分子雷射表面粗化
外文關鍵詞: GaN-based, light-emitting diodes, light extraction efficiency, KrF excimer laser, surface texturing
相關次數: 點閱:127下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文之研究旨在藉由不同脈衝之準分子雷射(KrF laser;波長為248 nm)燒蝕製程與熱氫氧化鉀(KOH)化學濕式蝕刻製程,於薄膜(thin-film, TF)覆晶(flip-chip, FC)氮化銦鎵-基(InGaN-based)發光二極體(light-emitting diode, LED)之表面,製備不同尺寸之半球圓弧狀突起物並附加六角錐形狀之表面粗化形貌,以增進LED之光輸出效率與功率。主要研究內容概分為以下四個部分。
    第一部分目標係製備薄膜覆晶氮化銦鎵-基發光二極體(TFFC-LED),首先使用有機金屬化學氣相沉積法於圖案化藍寶石基板上製備LED磊晶,接續進行金屬化製程及晶圓接合,並使用KrF laser進行雷射剝離製程以剝離藍寶石基板,最後再藉由乾蝕刻製程定義LED磊晶尺寸(1×1 mm2),成功製備TFFC-LED元件。
    第二部分目標係利用不同脈衝數之KrF laser於TFFC-LED之u-GaN表面進行燒蝕製程,利用瞬間高溫使u-GaN表面分解成液態金屬鎵以及氮氣,因GaN磊晶缺陷程度與晶格品質差異造成雷射燒蝕速率不一,於u-GaN上形成半球圓弧狀突起物,接續進行熱KOH濕蝕刻製程,製備具半球圓弧狀突起物,亦附加六角錐形狀之表面形貌。藉由上述製程分別提升GaN磊晶與空氣間之光逃逸角,提升光輸出功率(light output power, LOP)以及提升最大輸出功率(Pmax)。
    第三部分目標係量測具不同粗化製程條件之TFFC-LED之發光特性,操作於工作電流350 mA(700 mA)條件下,相較於原始未進行任何粗化製程之TFFC-LED,具150脈衝數之KrF laser燒蝕製程及熱KOH化學蝕刻製程之TFFC-LED,光輸出功率(∆LOP/LOP)提升13.08% (12.81%),以及光電轉換效率(wall-plug efficiency, WPE)增加2.87% (2.25%),上述實驗結果驗證本研究之表面粗化結構有效提升TFFC-LED之光析出效率,亦使TFFC-LED元件於未來固態照明元件之應用上將極具潛力。
    第四部分目標係量測具不同粗化製程條件之TFFC-LED之光伏特性,太陽光源為AM1.5G條件,分別以1個太陽能量照射下(光強度:0.1 W/cm2),相較於原始未進行任何粗化製程之TFFC-LED,具150脈衝數之KrF laser燒蝕製程及熱KOH化學蝕刻製程之TFFC-LED,其最大輸出功率(∆Pmax/Pmax)可提升12.87%。另以最佳抗反射結果進行聚光I-V量測,在100個聚光太陽時轉換效率(efficiency, η)為2.06%,相較於相同元件之1個太陽照射時η為1.453%,其轉換效率(∆η/η)增加41.77%。由實驗結果證實本研究所提表面粗化結構確實有效改善TFFC-LED抗反射效果以及適用於InGaN-基太陽電池於高聚光太陽電池之應用。
    且預期本研究之雷射粗化製程於GaN-基LED與太陽電池應用上將極具潛力。本研究使用KrF準分子雷射技術表面粗化製程與黃光微影及奈米球微影術等方法相較簡單且不需昂貴設備、冗長複雜的製程步驟及真空製程環境限制等優點,可分別提升GaN-基LED與太陽電池之發光與轉換效率,極具商業應用價值,可作為光電產業製程技術參考。

    In this study, an efficient, fast and simple surface texturing process using KrF laser irradiation in conjunction with hot KOH chemical wet etching on the undoped GaN (u-GaN) surface of TFFC-LEDs with a CuW-bonded substrate is demonstrated. The surface roughening scheme that comprises of dome and curved ramp of circular protrusions superimposed by hexagonal cones could be defined a three-fold roughening surface. The proposed surface roughening scheme could effectively improve total internal reflection (TIR) at the u-GaN/air interface. The effects of surface morphology after roughening processes with various numbers of KrF laser irradiation pulses on the performance of TFFC-LEDs are examined by ray-tracing simulations and experiments. As compared to regular-TFFC-LEDs without any etching process, the proposed TFFC-LEDs with 150-pulses of KrF laser irradiation and chemical wet etching (referred to as Device C-150) shows a typical increase in light output power (∆LOP/LOP) of LED by 13.08% at 350 mA. And the proposed Device C-150 shows a typical increase in maximum output power (∆Pmax/ Pmax) of solar cell by 12.87% under 1-sun air mass 1.5 global (AM1.5G) solar illumination. Under 100-sun AM 1.5G, Device C-150 exhibited best energy conversion efficiency of solar cell (η) with 2.06%. The enhancement of Device C-150 in η (∆η/η) was increased with 41.77% under 100-sun AM 1.5G, as compared to the same device under 1-sun AM 1.5G.

    摘 要I AbstractIV 誌謝VIII 目錄IX 表目錄XII 圖目錄XIII 第一章、簡介1 1-1、氮化鎵材料特性以及應用1 1-1-1、高功率氮化鎵-基(GaN-based)發光二極體(LEDs)2 1-1-2、太陽能源發展與氮化銦鎵-基(InGaN-based)太陽電池(SCs)6 1-2、研究動機11 第二章、理論基礎與文獻回顧13 2-1、發光二極體之原理13 2-2、發光二極體發光效率與表面粗化技術15 2-2-1、發光二極體發光效率15 2-2-2、菲涅耳損耗16 2-2-3、全反射與表面粗化技術18 2-3、太陽電池之原理22 2-3-1、太陽電池電路模型23 2-3-2、太陽電池重要參數26 2-4、太陽電池效率提升技術31 2-4-1、表面粗糙化31 2-4-2、仿生次波長抗反射層32 2-4-3、抗反射層光學設計33 2-5、高聚光太陽電池36 2-5-1、高聚光太陽電池分析37 2-5-2、高聚光太陽電池公式37 第三章、實驗流程與設備39 3-1、實驗流程39 3-2、實驗設備40 3-2-1、準分子(excimer laser )雷射系統40 3-2-2、高解析掃描式電子顯微鏡(scanning electron microscopy, HRSEM)45 3-2-3、LED測試機與測試平台47 3-2-4、積分球量測系統48 3-2-5、太陽光模擬器與I-V量測系統(Science Tech 150W)49 3-2-6、全波段入射光子轉換效率光度計(先鋒科技QE-3000)50 3-2-7、TracePro光學模擬軟體簡介51 第四章、製備半球圓弧狀突起物附加六角錐形狀之LED元件53 4-1、TFFC-LED元件製備之製程流程53 4-2、半球圓弧狀突起物附加六角錐形狀製備方法與分析59 4-2-1、製備方法文獻回顧59 4-2-2、KrF準分子雷射製備半球圓弧狀突起物附加六角錐形狀61 4-3、元件特性量測結果與討論66 4-3-1、出光軌跡模擬-不同尺寸半球圓弧狀突起物附加六角錐形狀66 4-3-2、TFFC-LED發光特性分析69 4-3-3、入光軌跡模擬-不同尺寸半球圓弧狀突起物附加六角錐形狀75 4-3-4、TFFC-LED光伏特性分析78 4-3-5、TFFC-LED之高聚光太陽分析82 第五章、結論與未來研究之建議86 5-1、結論86 5-2、未來研究之建議88 參考文獻90

    [1]J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager III, E. E. Haller, Hai Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys., vol. 94, no. 10, pp. 6477–6482, Nov. 2003.
    [2]S. Nakamura, T. Mukai, and M. Senoh, “High brightness InGaN/AlGaN double heterostructure blue green light emitting diodes,” J. Appl. Phys.,vol.76, pp. 8180-8191, Dec. 1994.
    [3]http://www.dcn.com.tw/dcn_ecom/p_trace/950402-950415/01-70.htm. (LED產業分析報告)
    [4]U.S. Department of Energy, “Solid-state lighting research and development multi-Year program plan,” U.S. Department of Energy, Washington, DC, Apr. 2013.
    [5]http://www.lighting-ledlight.com/index.php/tag/indoor-led-light/. (LED市場分布)
    [6]U.S. National Lighting Bureau, “74% market penetration predicted for white-light LED,” U.S. National Lighting Bureau, Washington, DC, Aug. 2013.
    [7]http://www.mem.com.tw/article_content.asp?sn=1112140008. (HB LED室內照明)
    [8]http://www.ledinside.com.tw/news/20080123-3459.html. (戶外燈飾LED)
    [9]http://www.jin-li.com.tw/html/product_detail.asp?id=257&catid=1. (LED顯示器)
    [10]http://incar.tw/audi-r8-spyder-launched. (Audi)
    [11]http://www.leader-park.com.tw/cp/html/?6.html. (LED紅綠燈號誌)
    [12]https://en.wikipedia.org/wiki/Solar_cell. (Solar cell Wikipedia)
    [13]T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, ”Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett., vol. 81, no. 7, pp. 1246-1248, Aug. 2002.
    [14]New Energy and Industrial Technology Development Organization, “Overview of PV roadmap toward 2030 (PV 2030),” Jun. 2004.
    [15]黃惠良,”太陽電池”,五南圖書出版公司,2008。
    [16]M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, "Solar cell efficiency tables (version 40)," Prog. Photovolt: Res. Appl., vol. 20, pp. 606-614, 2012.
    [17]L. L. Kazmerski, “Best Research cell Efficiencies,” National Renewable Energy Laboratory, 2015.
    [18]H. Hamzaoui, A. S. Bouazzi, and B. Rezig, "Theoretical possibilities of InxGa1−xN tandem PV structures," Sol. Energy Mater. Sol. Cells, vol. 87, no. 1-4, pp. 595-603, May 2005.
    [19]M. R. Islam, M. Rayhan, M. Hossain, A. G. Bhuiyan, M. Islam, and A. Yamamoto, "Projected performance of InxGa1-xN-based multijunction solar cells," Electrical and Computer Engineering, 2006. ICECE'06. International Conference on. IEEE, pp. 241-244 , Dec. 2006.
    [20]M. R. Islam, T. Hasan, M. Rayhan, and A. G. Bhuiyan, "High efficiency InxGa1-xN-based multi-junction photovoltaic cells with concentrator," Information and Communication Technology, 2007. ICICT'07. International Conference on. IEEE, pp. 155-158, Mar. 2007.
    [21]M. Horie, K. Sugita, A. Hashimoto, and A. Yamamoto, “MOVPE growth and Mg doping of InxGa1−xN (x∼0.4) for solar cell,” Sol. Energy Mater. Sol. Cells, vol. 93, no. 6-7, pp. 1013-1015, Jun. 2009.
    [22]S. Valdueza-Felip, A. Mukhtarova, L. Grenet, C. Bougerol, C. Durand, J. Eymery, and E. Monroy, “Improved conversion efficiency of as-grown InGaN/GaN quantum-well solar cells for hybrid integration,” Appl. Phys. Express, vol. 7, no. 3, p. 032301-1, 2014.
    [23]N. G. Young, E. E. Perl, R. M. Farrell, M. Iza, S. Keller, J. E. Bowers, S. Nakamura, S. P. DenBaars, and J. S. Speck, “High-performance broadband optical coatings on InGaN/GaN solar cells for multijunction device integration,” App. Phys. Lett., vol. 104, no. 16, p. 163902-1, 2014.
    [24]R. M. Farrell, D. J. Friedman, N. G. Young, E. E. Perl, N. Singh, J. R. Lang, C. J. Neufeld, M. Iza, S. C. Cruz, S. Keller, W. E. McMahon, S. Nakamura, S. P. DenBaars, U. K. Mishra, J. E. Bowers, and J. S. Speck, “InGaN-based solar cells and high-performance broadband optical coatings for ultrahigh efficiency hybrid multijunction device designs,” CLEO: Applications and Technology. Optical Society of America, p. ATh4N-1, Jun. 2013.
    [25]J. J. Wierer Jr., D. D. Koleske, and S. R. Lee, “Influence of barrier thickness on the performance of InGaN/GaN multiple quantum well solar cells,” Appl. Phys. Lett.,vol. 100, no. 11, p. 111119-1, 2012.
    [26]E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett., vol. 98, no. 2, p. 021102-1, 2011.
    [27]T. A. Truong, L. M. Campos, E. Matioli, I. Meinel, C. J. Hawker, C. Weisbuch, and P. M. Petroff, “Light extraction from GaN-based light emitting diode structures with a noninvasive two-dimensional photonic crystal,” Appl. Phys. Lett., vol. 94, no. 2, p. 023101-1, 2009.
    [28]J. J. Chen, Y. K. Su, C. L. Lin, S. M. Chen, W. L. Li, and C. C. Kao, “Enhanced output power of GaN-based LEDs with nano-patterned sapphire substrates,” IEEE Photonics Technol. Lett., vol. 20, no. 13, pp. 1193-1195, 2008.
    [29]Y. K. Su, J. J. Chen, C. L. Lin, S. M. Chen, W. L. Li, and C. C. Kao, “GaN-based light-emitting diodes grown on photonic crystal-patterned sapphire substrates by nano-sphere lithography,” Jpn. J. Appl. Phys., vol. 47, no. 8S1, pp. 6706-6708, 2008.
    [30]H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng, and G. Wang, “Enhancement of the light output power of InGaN/GaN light-emitting diodes grown on pyramidal patterned sapphire substrates in the mirco-and nanoscale,” J. Appl. Phys., vol. 103, no. 1, p. 014314-1, 2008.
    [31]D. M. Kuo, S. J. Wang, K. M. Uang, T. M. Chen, H. Y. Kuo, W. C. Lee, and P. R. Wang, “Enhanced performance of vertical GaN-based LEDs with highly reflective p-Ohmic contact and periodic indium-zinc oxide nano-wells,” IEEE Photonics Technol. Lett., vol. 22, no. 5, pp. 338-340, 2010.
    [32]W. C. Lee, K. M. Uang, D. M. Kuo, J. C. Chou, T. M. Chen, H. Y. Kuo, and S. J. Wang, “Use of highly reflective Ohmic contact and surface KrF laser roughening to improve light output of vertical GaN-based light-emitting diodes,” Device Research conference, 2008. IEEE, pp. 141-142, Jun. 2008.
    [33]D. M. Kuo, S. J. Wang, K. M. Uang, T. M. Chen, W. C. Tsai, W. I. Hsu, W. C. Lee, P. R. Wang, and C. R. Tseng, “The preparation of SiO2 nanotubes with controllable inner/outer diameter and length using hydrothermally grown ZnO nanowires as templates,” Jpn. J. Appl. Phys., vol. 49, no. 4S, p. 04DN10-1, 2010.
    [34]C. H. Kuo, H. C. Feng, C. W. Kuo, C. M. Cheng, and L. W. Wu, “Nitride-based near-ultraviolet light emitting diodes with meshed p-GaN,” Appl. Phys. Lett., vol. 90, no. 14, pp. 142115-142118, 2007.
    [35]M. A. Tsai, P. Yu, C. L. Chao, C. H. Chiu, H. C. Kuo, S. H. Lin, J. J. Huang, T. C. Lu, and S. C. Wang, “Efficiency enhancement and beam shaping of GaN-InGaN vertical-injection light-emitting diodes via high-aspect-ratio nanorod arrays", IEEE Photonics Technol. Lett., vol. 21, no. 4, pp. 257-259, 2009.
    [36]R. Windisch, C. Rooman, S. Meinlschmidt, P. Kiesel, D. Zipperer, G. H. Döhler, B. Dutta, M. Kuijk, G. Borghs, and P. Heremans, “Impact of texture-enhanced transmission of high-efficiency surface-textured light-emitting diodes,” App. Phys. Lett., vol. 79, no. 15, pp. 2315-2317, 2001.
    [37]H. W. Huang, C. H. Lin, C. C. Yu, B. D. Lee, C. H. Chiu, C. F. Lai, H. C. Kuo, K. M. Leung, T. C. Lu, and S. C. Wang, “Enhanced light output from a nitride-based power chip of green light-emitting diodes with nano-rough surface using nanoimprint lithography,” Nanotechnology, vol. 19, no. 18, pp. 185301-185305, 2008.
    [38]S. J. Chang, C. F. Shen, W. S. Chen, C. T. Kuo, and T. K. Ko, “Nitride-based light emitting diodes with indium tin oxide electrode patterned by imprint lithography,” App. Phys. Lett., vol. 91, no. 1, p. 013504-1, 2007.
    [39]H. W. Wang, H. C. Chen, Y. A. Chang, C. C. Lin, H. W. Han, M. A. Tsai, H. C. Kuo, P. Yu, and S. H. Lin, “Conversion Efficiency Enhancement of GaN/In0.11Ga0.89N Solar Cells With Nano Patterned Sapphire and Biomimetic Surface Antireflection Process,” IEEE Photonics Technol. Lett., vol. 23, no. 18, pp. 1304-1306, 2011.
    [40]S. M. Sze, “Physics of semiconductor devices,” Wiley, New York, 1981.
    [41]郭浩中,賴芳儀,郭守義,“LED原理與應用”,五南圖書出版公司,2009。
    [42]A. Zukauskas, M. S. Shur, and R. Caska, “Introduction to solid state lighting,” Wiley, New York, 2002.
    [43]W. C. Lee, S. J. Wang, K. M. Uang, T. M. Chen, D. M. Kuo, P. R. Wang, and P. H. Wang, “Enhanced light output of GaN-based vertical-structured light-emitting diodes with two-step surface roughening using KrF laser and chemical wet etching", IEEE Photonics Technol. Lett., vol. 22, no. 17, pp. 1318-1320, 2010.
    [44]C. H. Chao, S. C. Hung, S. C. Shiu, M. T. Kuo, C. H. Chen, C. H. Chang, and C. F. Lin , “Influence of architecture-controlled GaN rod arrays on the output power of GaN LEDs,” IEEE Photonics Technol. Lett., vol. 22, no. 24, pp. 1847-1849, 2010.
    [45]C. H. Ho, Y. H. Hsiao, D. H. Lien, M. S. Tsai, D. Chang, K. Y. Lai, C. C. Sun, and J. H. He, “Enhanced light-extraction from hierarchical surfaces consisting of p-GaN microdomes and SiO2 nanorods for GaN-based light-emitting diodes,” Appl. Phys. Lett., vol. 103, no. 16, p. 161104-1, 2013.
    [46]C. Z. Xu, R. Yuan, X. G. Hui, L. J. Tao, C. Xia, W. X. Hua, J. C. Jun, and Z. B. Jun, “Enhancing light extraction of GaN-based blue light-emitting diodes by a tuned nanopillar array,” Chin. Phys. B, vol. 23, no. 1, p. 018502-1, 2014.
    [47]http://www.pveducation.org/pvcdrom/appendices/standard-solar-spectra. (太陽頻譜照度)
    [48]K. M. Uang, S. J. Wang, S. L. Chen, Y. C. Yang, T. M. Chen, and B. W. Liou, “Effect of surface treatment on the performance of vertical-structure GaN-based high-power light-emitting diodes with electroplated metallic substrates,” Jpn. J. Appl. Phys., vol. 45, no. 4B, pp. 3436-3441, 2006.
    [49]邱孟儀,"應用仿生抗反射結構於高效率三五族多接面太陽能電池”,國立交通大學顯示科技研究所碩士論文,2000。
    [50]C. H. Ho, K. Y. Lai, C. A. Lin, G. J. Lin, M. K. Hsing, and J. H. He, “Microdome InGaN-based multiple quantum well solar cells,” Appl. Phys. Lett., vol. 101, no. 2, p. 023902-1, 2012.
    [51]C. H. Ho, D. H. Lien, H. C. Chang, C. A. Lin, C. F. Kang, M. K. Hsing, K. Y. Lai, and J. H. He, “Hierarchical structures consisting of SiO2 nanorods and p-GaN microdomes for efficiently harvesting solar energy for InGaN quantum well photovoltaic cells,” Nanoscale, vol. 4, no. 23, pp. 7346–7349, 2012.
    [52]R. M. Farrell, A. A. Al-Heji, C. J. Neufeld, X. Chen, M. Iza, S. C. Cruz, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “Effect of intentional p-GaN surface roughening on the performance of InGaN/GaN solar cells,” Appl. Phys. Lett.,vol. 103, no. 24, p. 241104-1, 2013.
    [53]R. R. King, A. Boca, W. Hong, X. Q. Liu, D. Bhusari, D. Larrabee, K. M. Edmondson, D. C. Law, C. M. Fetzer, S. Mesropian, and N. H. Karam, “Band-gap-engineered architectures for high-efficiency multijunction concentrator solar cells,” 24th European Photovoltaic Solar Energy Conf., Hamburg, Germany, vol. 21, Sep. 21-25, 2009.
    [54]李永春,”準分子雷射為加工機一般使用者訓練教材”,國立成功大學機械系,2004。
    [55]P. S. Tseng, “JSM-6700F HR-FESEM Operation Manual,” Department of Chemical Engineering National Cheng Kung University.
    [56]http://www.lambdares.com/. (TracePro introduction & analysis).
    [57]呂俊逸,”ArF準分子雷射光刻與液態光罩對AZ4620光阻之成形研究”,國立中正大學積電光整合工程研究所碩士論文,2003。
    [58]D. Basting, K. D. Pippert, and U. Stamm, "History and future prospects of excimer lasers," Second International Symposium on Laser Precision Micromachining. International Society for Optics and Photonics, pp. 25-34, Feb. 2002.
    [59]李偉吉,”高效率具垂直結構與金屬基板之氮化鎵系列發光二極體之研製”,國立成功大學微電子工程研究所博士論文,2010。
    [60]林冠宇,”利用折射係數漸變奈米結構提升氮化鎵發光二極體光析出之研究”,國立成功大學微電子工程研究所碩士論文,2013。
    [61]王宗新,”金字塔抗反射結構之製作及其單晶矽太陽能電池之應用”,國立中山大學光電工程研究所碩士論文,2007。

    無法下載圖示 校內:2020-08-20公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE