| 研究生: |
陳仲秋 Chen, Chung-Chiu |
|---|---|
| 論文名稱: |
溶劑與回火溫度對對排聚苯乙烯晶體轉換的影響 Effect of solvent and annealing perature on the crystal transformation of syndiotactic polystyrene |
| 指導教授: |
王紀
Wang, Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 對排聚苯乙烯 、溶劑 、delta晶型 、TTGG |
| 外文關鍵詞: | syndiotactic polystyrene, solvent, TTGG, delta form |
| 相關次數: | 點閱:124 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
對排苯乙烯(sPS)的合成與晶體特性在過去的十年間已經被報導,它是一種很容易結晶並且有很高的熔點(大約270oC) 的聚合物,而其結晶會依照其結晶情況呈現出複雜的多晶態。sPS有四種結晶晶型alpha、beta、gama、delta,和兩種結構,alpha、beta晶型是屬於TTTT結構(平面鋸齒狀),而gama、delta晶型是屬於TTGG結構(螺旋狀排列)。
delta晶型sPS (clathrate,晶籠結構)擁有s(1/2)2螺旋狀的晶體(主體),晶體裡包含了第二種化學分子(客體),這個半結晶的晶籠化合物,可以藉由溶劑結晶或是吸收合適的溶劑分子(例如二氯乙烷、甲苯、氯彷、鄰位二氯苯)得到。至於delta-e晶型sPS它是將利用合適的萃取程序將�晶型sPS中的“客體”從晶體內趕出,其所呈現的結構與�晶型很相似,而它的單位晶格內會包含二個孔洞。delta-e晶型sPS所擁有的奈米孔洞可以快速吸收合適的有機化合物而轉換回�晶型,這些奈米孔洞可以進一步的應用在化學分離和水分離與空氣的純化上。
將delta-e晶型sPS藉由加熱至130°C以上,它便會轉變成gama晶型,這時它還是保持著TTGG的結構,若再將溫度升高,gama晶型會轉變成平面鋸齒狀的TTTT (alpha和beta晶型),在這轉變的過程中,sPS顯現出非常複雜的多晶態,而造成這些改變最主要的原因在於樣品的熱處理過程和溶劑種類的不同。本研究主要在研究sPS利用溶劑成膜,經由各種回火處理對晶體轉換的影響。
Syndiotactic polystyrene (sPS), whose synthesis was reported about a decade ago, is a easily crystallizable and high melting (about 270°C) polymer, presenting a mplicated polymorphism depending on the crystallization conditions. There are four types of crystalline form, alpha, beta, ama, and delta, and two types of conformation. Forms alpha and beta have TTTT conformation (planar zig-zag). Gama and belta� forms have TTGG conformation (s(2/1)2 helical chains).
The delta form (clathrate phases) forms a crystal attice (the host) containing spaces in which molecules of a second chemical species (the guest) are located. Semicrystalline samples including clathrate phases can be obtained, by tion crystallization or by sorption of suitable organic olecules (e.g., dichloroethane, toluene, chloroform, o-DCB etc.). The delta-e form, which can be obtained by suitable guest extraction procedures on samples in all clathrate forms presents a structure similar to those of the sPS lathrates, but in place of the guest molecules, it includes two ntical cavities per unit cell. sPS samples in the nanoporous delta-e form rapidly absorb suitable volatile organic compounds and transform into the corresponding clathrate forms. orous delta-e form samples are promising for pplications in mical separations as well as in water and air purification.
By heating the delta-e form above 130 °C, it is nsformed to the gama form with keeping the chain conformations of (TTGG) form. This gama form transfers to the planar zig-zag form (TTTT, alpha and beta forms) by heat treatment at gher temperature. In this way sPS shows a very complicated hism. These changes remarkably depend on such various conditions as the thermal treatment of the samples and the kind of solvent. This research focuses on the crystal ransformation of sPS, which was prepared by the solution-cast method and annealing at different temperatures.
1. N. Ishihara, T. Seimiya, M. Kuramoto and M. Uoi, Macromolecules, 19, 2465 (1986).
2. J.-W. Ha and K.-J. Chu, Materials Letters, 33, 149-152 (1997).
3. S. Cimmino, E. di Pace, E. Martuscelli, C. Silvestre, Polymer, 32, 1080 (1991).
4. Y. Chatani, Y. Fujii, Y. Shimane, T. Ijitsu, Polym. Prepr. Jpn. (Engl. Ed.), 37, E428 (1988).
5. O. Gries, Y. Xu, T. Asano, J. Petermann, Polymer, 30, 590 (1989).
6. C. De Rosa, G. Guerra, V. Petraccone, P. Corradini, Polym. J. 23, 1435 (1991).
7. A. M. Evans, E. J. Kellar, J. Knowles, C. Galiotis, C. J. Carriere and H. Andrews, Polym. Eng. Sci., 37, 153 1997).
8. 劉思呈, “對位聚苯乙烯晶體微結構”, 私立元智大學化學工程研究所碩士論文(2000).
9. C. De Rosa, M. Rapacciuolo, G. Guerra, V. Petraccone, P. Corradini, Polymer, 33, 1423 (1992).
10. C. De Rosa, G. Guerra, P. Corradini, Rend. Fis. Acc. Lincei, 2, 227 (1991).
11. A. Immirzi, F. de Candia, P. Ianelli, A. Zambelli, V. Vittoria Macromol. Chem. Rapid Commun., 9,761 (1988).
12. V. Vittoria, F. de Candia, P. Ianelli, A. Immirzi, Macromol. Chem. Rapid Commun., 9, 765 (1988).
13. R. A. Nyquist, Appl. Spectrosc., 43, 440 (1989).
14. N. M. Reynolds, J. D. Savage, S.L. Hsu, Macromolecules, 22, 2867 (1989).
15. K. Tsutsui, T. Katsumata, H. Fukatsu, H. Yoshimizu, T. Kinoshita, Y. Tsujita, Polym. J., 31, 268 (1999).
16. K. Tsutsui, T. Katsumata, Y. Yamamoto, H. Fukatsu, H. Yoshimizu, T. Kinoshita, Y. Tsujita, Polymer, 40, 3815 (1999).
17. G. Guerra, V. M. Vitagliano, C. De Rosa, V. Petraccone, and P. Corradini, Macromolecules, 23, 1539 (1986).
18. C. Manfredi, C. De Rose, G. Guerra, M. Rapacciuolo, F. Auriemma, and P. Corradini, Macromol. Chem. Phys. 196, 2795 (1995).
19. K. Tashiro, A. Yoshioka, Macromolecules, 35, 410 (2002).
20. M. Rapacciuolo, C. De Rosa, G. Guerra, G. Mensi-tieri, A. Apicella, and M. A. Del Nobile, J. Mater. Sci. Lett.,
0, 1084 (1991).
21. JS Chiou, JW Barlow, Paul DR. J Appl. Polym. Sci., 30, 2633 (1985).
22. JS Chiou, JW Barlow, Paul DR. J Appl. Polym. Sci., 30, 3911 (1985).
23. JS Chiou, JW Barlow, Paul DR. J Appl. Polym. Sci., 30, 4019 (1985).
24. E. Reverchon, G. Guerra, V. Venditto, J. Appl. Polym. Sci., 74, 2077 (1999).
25. C. De Rosa, G. Guerra, V. Petraccone, B. Pirozzi, Macromolecules, 30, 4147 (1997).
26. G. Milano, V. Venditto, G. Guerra, L. Cavallo, P. Ciambelli, D. Sannino, Chem. Mater., 13, 1506 (2001).
27. Y. Chatani, Y. Shimane, Y. Inoue, T. Inagaki, T. hioka, T. Ijitsu, T. Yukinari, Polymer, 33, 488 (1992).28. K. sui, Y.Tsujita, H. Yoshimizu and T. Kinoshita, Polymer, 39, 5177
(1998).
29. T. Nakaoki, M. Kobayashi, J. Mol. Struct., 242, 315 (1991).
30. C. Manfredi, C. De Rose, G. Guerra, M. Rapacciuolo, F. Auriemma, and P. Corradini, Macromol. Chem. Phys., 196, 2795 (1995).
31. Kobayashi, M.; Akita, K.; Tadokoro, H. Makromol. Chem., 118, 324 (1968).
32. Kohji Tashiro, Yoko Ueno, Akiko Yoshioka, and Masamichi Kobayashi, Macromolecules, 34, 310 (2001).
33. G. Milano, V. Venditto, G. Guerra, Chem. Mater., 13, 1506 (2001).
34. G. Guerra, V. M. Vitagliano, C. D. Rosa, V. Petraccone and P. Corradini, Macromolecules, 23, 1539 (1990).
35. 廖巍博, “以小角度散射法決定高分子微結構”, 國立成功大學化學工程研究所碩士論 文(2002).
36. D. N. Kendall, “Applied infrared spectroscopy”, Reinhold Pub. Corp.,(1966).
37. C. J. Pouchert, “The aldrich library of infrared spectra”, 2nd edition, by Aldrich Chemical Company, printed in the United States of American library of gress catalog card number 75-4475.
38. F. J. Balta-Calleja and C. G. Vonk, “X-Ray Scattering of Synthetic Polymers”, Elserier (1989).
39. N. M. Reynolds, J. D. Savage, S. L. Hsu, acromolecules, 22, 2867 (1989).
40. M. Kobayashi, T. Nakaoki, and N. Ishihara, romolecules, 23, 78 (1990).
41. G. Guerra, P. Musto, F. E. Karasz, W. J. Mac- Knight, Makromol. Chem., 191, 2111 (1990).
42. A. R. Filho and V. Vittoria, Makromol. Chem., Rapid Commun., 11, 199 (1990).
43. N. M. Reynolds and S. L. Hsu, Macromolecules, 23, 3463 (1990).
44. Y. Li, G. Xue, Makromol. Chem., Rapid Commun., 19, 549 (1998).
45. D. W. Van Krevelen, “Properties of polymers”, 3rd edition, by Elsevier (1990).
46. J. A. Riddick, W. B. Bunger, “Organic solvents”, 3rd edition, by WILLY-INTERSCIENCE.
47. SIGMA catalog (2002-2003).
48. ALDRICH catalog (2002-2003).