簡易檢索 / 詳目顯示

研究生: 賴怡潔
Lai, Yi-chieh
論文名稱: 高週波電漿濺鍍程序製備質子交換膜燃料電池電極
Preparation of Proton Exchange Membrane Fuel Cell Electrodes Using an RF Plasma Sputtering Process
指導教授: 李文智
Lee, Wen-Jhy
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 140
中文關鍵詞: 膜電極組奈米厚度電漿濺鍍燃料電池
外文關鍵詞: Plasma sputtering, Fuel cell, Nano-film, Membrane electrode assembly
相關次數: 點閱:75下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   環境保護是國家推動永續發展的重要指標,亦為影響國家能源政策以及科技導向的關鍵因素。世界各國在開發新能源過程中,發現氫能是最潔淨能源可同時減少污染物及CO2排放,而燃料電池(fuel cell)是利用氫能的載具,很適合投入研究發展的選擇。本研究即以最具商用潛力之質子交換模型燃料電池(PEMFC)為研究課題,以高週波電漿磁控濺鍍方式披覆奈米厚度之白金鍍層,並探討不同的濺鍍披覆白金方式、白金載量、Nafion溶液塗量及濺鍍操作參數,對燃料電池效能的影響。研究結果顯示,電漿操作參數實驗中(50 W~150 W; 10-4 ~10-2 Torr)以輸入功率100 W、操作壓力10-3 Torr下製備之陰極電極有較佳之放電效能。本研究即以此為操作參數,陰極電極在相同的Pt披覆量下,濺鍍在碳布載碳粒之Pt/C之電池放電效能比直接濺鍍在Nafion membrane者為佳。然而濺鍍在碳布載碳粒上陰極電極之放電效能並不絕對隨著Pt觸媒披覆量增加而提升,於0.02~0.4 mg Pt / cm2載量範圍內以Pt載量0.1 mg / cm2者有較佳之效能。另外,比較塗刷Nafion溶液之電極,雖能增加觸媒之活性面積,但可能因O2質傳阻抗之增加,仍無助於放電效能之提升。

      Environmental protection has been recongnized as the main approach for global society development in recent years. A number of recent studies suggest that moving to the use of hydrogen may be much cleaner. The use of fuel cells with hydrogen fuel may alleviate the emission of air pollutants from utilizing fossil fuels.
      
      This study focused on the fabrication of MEAs or electrodes used for H2-O2 fuel cells by a RF plasma sputtering process incorporating Pt nano-film coating. The effects of Pt sputtering ways, Pt loading, Nafion solution addition, and sputtering source power in electrode fabrication on the MEA/cell performance were evaluated according to the measurements of current density vs. potential (polarization) curve, cyclic voltammetry (CV), and AC impedance spectra.
      
      The results show that the MEAs fabricated by direct sputtering Pt onto the Nafion membrane electrolyte exhibited very poor cell performances although the sputtered Pt films were very thin (nano-size, e.g., approximately 50 nm at the Pt loading of 0.1 mg/cm2). The MEAs prepared by sputtering Pt onto uncatalyzed substrate (carbon particles supported with carbon cloth) followed by the hot-press with Nafion membrane showed various performances at the Pt loadings of 0.02, 0.04, 0.1, 0.2 and 0.4 mg/cm2. The better cathode Pt loading was found to be 0.1 mg/cm2 because it displayed a greater electrochemical active surface (EAS) area and a lower kinetic resistance than the others. The addition of Nafion solution to the sputtered Pt layers with the loading of 0.1 to 0.3 mg/cm2 did not improve the MEA/cell performance because this treatment enlarged the EAS area, possibly increased ohmic and mass transfer resistances, even though it enlarged the EAS area. The MEA prepared at the sputtering source power of 100 W and Argon at 10-3 Torr showed a higher MEA/cell performance. This is mainly because the former MEA had lower ohmic and kinetic resistances than the latter two MEAs.

    中文摘要 ..........................................................I 英文摘要 ........................................................III 致謝 ..........................................................V 總目錄 .........................................................VI 表目錄 ..........................................................X 圖目錄 .........................................................XI 第一章 前言 .................................................1 第二章 文獻回顧 .................................................2 2-1 能源使用與環境衝擊 ........................................2 2-1-1 能源使用 .................................................2 2-1-2 環境衝擊 .................................................3 2-2 燃料電池類型與應用 ........................................5 2-2-1 發展史 .................................................5 2-2-2 類型及特徵 ........................................6 2-3 質子交換膜燃料電池的構造與操作 ..............................13 2-3-1 質子交換膜內的水管理 ..............................16 2-3-2 反應氣體在電極層內部的移動 ..............................18 2-4 燃料電池電極/膜電極組製備 ..............................20 2-4-1 濺鍍法製備燃料電池電極/膜電極組 .....................23 2-4-2 射頻磁控電漿濺鍍原理 ..............................26 2-5 電池性能分析 ................................................30 2-5-1 電極表面性質分析 .......................................30 2-5-2 電流-電壓(I-V curve)極化曲線 .....................32 2-5-3 循環伏安法 .......................................35 2-5-4交流阻抗分析 .......................................38 第三章 實驗設備與步驟 .......................................44 3-1實驗流程 ................................................44 3-2 藥品與儀器設備 .......................................46 3-3濺鍍法製備膜電極組 .......................................47 3-3-1 射頻磁控濺鍍系統 .......................................47 3-3-2 濺鍍操作參數控制 .......................................48 3-3-3 Nafion membrane(陽離子質子交換膜固體電解質)的前處理 ..49 3-3-4 白金觸媒層的製備 .......................................50 3-3-4-1以Nafion membrane為基材 ..............................51 3-3-4-2 以碳布載碳粒為基材 ..............................51 3-3-5 Nafion solution 塗量控制 ..............................54 3-3-6 熱壓法製備膜電極組 ..............................54 3-4 電極表面性質分析 .......................................55 3-5 電池放電測試 ................................................56 3-5-1 單電池組組裝 .......................................56 3-5-2 燃料電池測試系統組裝 ..............................59 3-6交流阻抗分析(AC impedance) ..............................60 3-7循環伏安法(CV)分析 .......................................61 第四章 結果與討論 ................................................62 4-1白金之沉積率分析 .......................................62 4-1-1輸入功率之影響 .......................................63 4-1-2操作壓力之影響 .......................................65 4-2 濺鍍操作參數對膜電極組/電池效能之影響 .....................67 4-2-1濺鍍輸入功率 .......................................67 4-2-1-1極化曲線之量測 .......................................67 4-2-1-2循環伏安法分析 .......................................73 4-2-1-3交流電阻抗分析 .......................................76 4-2-2濺鍍操作壓力 .......................................79 4-2-2-1極化曲線之量測 .......................................79 4-2-2-2循環伏安法分析 .......................................86 4-2-2-3交流電阻抗分析 .......................................89 4-3不同基材之膜電極組對電池效能之影響 .....................92 4-3-1以Nafion membrane為基材 ..............................94 4-3-2以碳布載碳粒為基材 .......................................99 4-4 不同白金載量之膜電極組對電池效能之影響 ....................102 4-4-1極化曲線之量測 ......................................102 4-4-2循環伏安法分析 ......................................110 4-4-3交流電阻抗分析 ......................................113 4-5 白金觸媒層上Nafion溶液塗量對電池效能之影響 ...........117 4-5-1極化曲線之量測 ......................................117 4-5-2循環伏安法分析 ......................................124 4-5-3交流電阻抗分析 ......................................127 第五章 結論與建議 ...............................................131 5-1 結論 ...............................................131 5-2建議 ........................................................133 參考文獻 ........................................................134 自述 ........................................................140

    Acres, G. T. K.; Frost, J. G.; Hards, G. A.; Potter, R. J.; Ralph, T. R.;    
     Thompsett, D.; Burstein, G. T.; Hutchings, G. J. “Electrocatalysts for Fuel
     Cells”, Catalysis Today, Vol. 38, pp. 393, 1997.
    Andreazza, P.; Andreazza-Vignolle, C.; Rozrnbaum, J. P.; Thomann, A.-L.;
     Brault, P. “Nucleation and initial growth of platinum islands by plasma
     sputter deposition”, Surface and Coating Technology, Vol. 151-152, pp. 122- 
     127, 2002.
    Antolini, E.; Giorgi, L.; Pozio, A.; Passalacqua, E. “Influence of Nafion
     loading in the catalyst layer of gas-diffusion electrodes for PEFC”, J.
     Power Sources, Vol. 77, pp. 136-142, 1999
    Bard, A. J.; Faulkner, L. R. “Electrochemical methods fundamentals and
     applications”, JOHN WIELY & SONS,INC., 2001.
    Bernardi, M. D.; Verbrugge, M. W. “A Mathematical Model of the Solid-Polymer-
     Electrolyte Fuel Cell”, J. Electrochem. Soc., Vol. 139, pp. 2477-249, 1992.
    Bockris, J. O. “The orginal of ideas on a Hydrogen Economy and its solution to
     the decay of the environment”, International Journal of Hydrogen Energy,
     Vol. 27, pp. 731-740, 2002.
    Cha, S. Y.; Lee, W. M. “Performance of Proton Exchange Membrane Fuel Cell E
     lectrodes Prepared by Direct Deposition of Ultrathin Platinum on the Membrane
     Surface”, J. Electrochem. Soc., Vol. 146, pp. 4055-4060, 1999.
    Chapman, B. “Glow Discharge Processes”, John Wiley & Son, Inc., pp. 9-13,
     1980.
    Cho, E.; Ko, J.-J.; Ha, H. Y.; Hong, S.-A.; Lee, K.-Y.; Lim, T.-W.; Oh, I.-H.
     “Effect of Water Removal on the Performance Degradation of PEMFCs
     Repetitively Brought to <0℃”, J. Electrochem. Soc., Vol. 151, pp. A661-
     A665, 2004.
    Dincer, I. “Environmental impacts of energy”, Energy Policy, Vol. 27, pp. 845-
     854, 1999.
    Dirven, P. G.; Engelen, W. J.; Van der poorten, C. J-M. “An oxygen electrode
     for air-consuming proton exchange membrane fuel cells for transportation
     applications”, J. Appl. Electrochem., Vol. 25, pp. 122-125, 1995
    Dunlop, J. A. et al, , J. Vac. Sci. Technol., A 11, Vol. 4, pp.1558, 1993.
    Enea, O.; McEvoy, A. J.; “Electrooxidation reactions on gas-diffusion
     electrodes catalyzed by DC sputtered Pt”, Electrochim. Acta, Vol. 44, pp.
     1441-1445, 1998.
    Gamburzev, S.; Appleby, A. J. “Recent progress in performance
     improvement of the proton exchange membrane fuel cell (PEMFC)”, J. Power  
     Sources, Vol. 107, pp. 5-12, 2002.
    Giner, J.; Hunter, C. “Model of a Hydrogen-Air Fuel Cell with Alkaline
     Electrolyte” J. Electrochem. Soc., Vol. 116, pp. 1124-1130, 1969.
    Gosser, D. K.; Jr. “Cyclic Voltammetry simulation and analysis of reaction
     mechanisms”, VCH publisher, Inc., 1994.
    Hart, D. “Sustainable energy conversion: fuel cells-the competitive
     option?”, J. Power Sources, Vol. 86, pp. 23-27, 2000.
    Hirano, S.; Kim, J.; Srinivasan, S. “High performance proton exchange membrane
     fuel cells with sputter-deposited Pt layer electrodes”, Electrochim. Acta,
     Vol. 42, pp. 1587-1593, 1997.
    International Energy Agency (IEA) 1997.
    John, K. “Fuel cells – a 21st century power system”, J. Power Source,Vol.
     71, pp. 12-18, 1998.
    Larminie, J.; Dicks, A. “Fuel Cell Systems Explained”, John Wiley & Son,
     Inc., 2000.
    Lee, S. J.; Mukerjee, S.; McBreen, J.; Rho, Y. W.; Kho, Y. T.; Lee, T. H.
     “Effects of Nafion impregnation on performances of PEMFC electrodes”,
     Electrochim. Acta, Vol. 43, pp. 3693-3701, 1998.
    Lin, S. D.; Hsiao, T. C.; Chang, J. R.; Lin, A. S. “Morphology of Carbon
     Supported Pt-Ru Electrocatalyst and the Co Tolerance of Anodes for PEM Fuel
     Cells”, J. Phys. Chem. B, Vol. 103, pp. 97-103, 1999.
    Min, M.; Cho, J.; Cho, K.; Kim, H. “Particle size and alloying effects of Pt-
     based alloy catalysts for fuel cell applications”, Electrochimica. Acta,
     Vol. 45, pp. 4211-4217, 2000.
    Mukerjee, S.; Srinivasan, S.; Appleby, A. J. “Effect of sputtered film of
     platinum on low platinum loading electrodes on electrode kinetics of oxygen
     reduction in proton exchange membrane fuel cells”, Electrochimica. Acta,
     Vol. 38, pp. 1661-1669, 1993.
    O’Hayre, R.; Lee, S-J.; Cha, S-W.; Prinz, F. B. “A sharp peak in the
     performance of sputtered platinum fuel cells at ultra-low platinum loading”,
     J. Power Source, Vol. 109, pp. 483-493, 2002.
    Pozio, A.; Francesco, M. D.; Cemmi, A.; Cardellini, F.; Giorgi, L. “Comparison
     of high surface Pt/C catalysts by cyclic voltammetry”, J. Power Source, Vol.
     105, pp. 13-19, 2002.
    Prater, K. B. “Polymer Electrolyte Fuel Cells: A Review of Recent
     Developments”, J. Power Source, Vol. 51, pp. 129, 1994.
    Qi, Z.; Kaufman, A. “Low Pt loading high performance cathodes for PEM fuel
     cells ”, J. Power Source, Vol. 113, pp. 37-43, 2003.
    Rossnagel, S. M.; Cuomo, J. J.; Westwood, W. D. “Handbook of Plasma
     Technology”, Noyes Publications, Park Ridge, New Jersey, USA, 1990.
    Sasikumar, G.; Ihm, J. W.; Ryu, H. “Depedance of optimum Nafion content in
     catalyst layer on platinum loading”, J. Power Source, Vol. 132, pp. 11-17,
     2004.
    Sjunnesson, L. “ Utilities and their investments in fuel cells”, J. Power
     Source, Vol. 71, pp. 41-44, 1998.
    Springer, T. E.; Raistrick, D. “Electrical Impedance of a Pore Wall for the
     Flooded Agglomerate Model of Porous Gas Diffusion Electrodes”, J.
     Electrochem. Soc., Vol. 136, pp. 1594-1603, 1989
    Stambouli, A. B.; Traversa, E. “Fuel cells, an alternative to standard sources
     of energy”, Renewable and Sustainable Energy Reviews, Vol. 6, pp. 297-306,
     2002.
    Taylor, E. J.; Anderson, E. B.; Vilambi, N. R. K. “Preparation of High-
     Platinum-Utilization Gas Diffusion Electrodes for Proyon-Exchange-Membrane
     Fuel Cells ”, J. Electrochem. Soc., Vol. 139, pp.L45-L46, 1992.
    Ticianelli, E. A.; Derouin, C. R.; Redondo, A.; Srinivasan, S. “ Methods to
     Advance Technology of Proton Exchange Membrane Fuel Cells”, J. Electrochem.
     Soc., Vol. 135, pp.2209-2214, 1988.
    Mttox, D. M. “Handbook of Physical Vapor Deposition (PVD) Processing”, Noyes
     Publications, Park Ridge, New Jersey, USA, 1998.
    Vielstich, W.; Gasteiger, H. A.; Lamm, A. “Handbook of Fuel Cells-
     Fundamentals, Technology and Applications”, Vol.2, 2003.
    Vossen, J. L.; Kerm, W. “Thin Film Process”, Academic Process, pp.134, 1999.
    Wasa, K.; Hayakawa, S. “Handbook of Sputter Deposition Technology”, Noyes
     Publications, 1991.
    Wilson, M. S.; Gottesfeld, S. “Thin-Film Catalyst Layers for Polymer
     Electrolyte Fuel Cell Electrodes”, J. Appl. Electrochem., Vol. 19, pp.1-7,
     1992.
    Wilson, M. S.; Gottesfeld, S. “High performance Catalyst Membranes of Ultra-
     low Pt Loadings for Polymer Electrolyte Fuel Cells”, J. Electrochem. Soc.,
     Vol. 139, L28-L30, 1992.
    Zawodzinski, T. A.; Derouin, C.; Radzinski, S.; Sherman, R. J.; Smith, V. T.;
     Springer, T. E.; Gottesfeld, S. “Water Uptake by and Transport through
     Nafion 117 Membrane”, J. Electrochem. Soc., Vol. 140, pp.1041-1047, 1993.
    吳浩青、李永舫,“電化學動力學”,科技圖書股份有限公司,2001
    林昱志,“質子交換膜型燃料電池阻抗之分析”,國立成功大學化工系碩士論文,2001
    洪昭男,“電漿反應器”, 化工技術,第3卷,第3期,124-135頁,1995
    高正雄譯著,“超LSI時代-電漿化學”,復漢出版社,1997
    陳力俊等著,“材料電子顯微鏡學”,國科會精儀中心,1994
    張玉清、許雅意、蔡克群,“質子交換膜燃料電池膜電極組體製作簡介”,化工技術,第10
     卷,第6期,178-185頁,2002
    梁書豪、蔡克群,“高分子電解質燃料電池(PEMFC)設計製作”,化工技術,第10卷,第6
     期,166-175頁,2002
    陳德蔭、林昇佃,“PEFC燃料電池電極觸媒的分析”,化工技術,第10卷,第6期,186-210
     頁,2002
    蔡克群,“燃料電池導論”,化工技術,第10卷,第6期,122-131頁,2002
    熊楚強、王月,“電化學”,文京圖書有限公司,1995
    鄭煜騰、鄭耀宗,“電池的製造技術”,能源季刊,第二十七卷 第二期,118頁,1997

    下載圖示 校內:2006-07-19公開
    校外:2006-07-19公開
    QR CODE