| 研究生: |
林泰廷 Lin, Tai-tin |
|---|---|
| 論文名稱: |
循環比例位移路徑下Sn/3.5Ag/0.75Cu BGA銲點試片疲勞
初始壽命預估-含循環損傷內涵時間黏塑性理論之應用 Prediction of Fatigue Initiation Life of BGA (Sn/3.5Ag/0.75Cu) Solder Joint Specimens under Cyclic Proportional Displacement Path via Damage Coupled Endochronic Viscoplasticity |
| 指導教授: |
李超飛
Lee, Chau-Fei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 損傷因子 、BGA銲點試片 、循環比例位移路徑 、Sn/3.5Ag/0.75Cu 、Endochronic疲勞壽命預估公式 、循環內涵時間黏塑性理論 、內涵損傷演化方程式 |
| 外文關鍵詞: | Endochronic fatigue life prediction., Damage factor, Evolution equation of intrinsic damage, BGA solder joint specimen, Endochronic cyclic viscoplasticity, Proportional displacement path, Sn/3.5Ag/0.75Cu |
| 相關次數: | 點閱:167 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文探討循環比例位移路徑( )下Sn/3.5Ag/0.75Cu BGA銲點試片拉/扭循環負荷之初始疲勞壽命預測。首先利用BGA錫球直立高度0.52mm修正Lee, T. K. 2007年碩士論文中位移-負荷數據,並繼續使用循環內涵時間黏塑性理論之材料參數與核心函數預測各 下之循環應力-應變曲線,利用等效非彈性應變 與等效應力 建立其關係式 。
本文(1)引入損傷等效非彈性應變 於彈性應變密度釋放率和損傷率關係式中之參數 ;(2)在內涵損傷時間定義下建立循環比例位移路徑之內涵損傷演化方程式,並提議損傷累積速率與循環圈數 有乘冪關係。由此可推導出損傷因子 ,並由循環負荷振幅隨 之下降數據獲得 及 並發現 為 、 及 的函數而 與 無關。在 之下Endochronic疲勞壽命預估公式為 ,其 與 無關,但 ,故 vs. 圖中預測結果為與 相關之曲線。此結果在不同範圍 下,可用多段直線表達Coffin-Manson之經驗式。
The purpose of this paper is to investigate the fatigue initiation life prediction of BGA (Sn/3.5Ag/0.75Cu) solder joint specimens under mixed mode cyclic proportional displacement path( ) .First, by using the BGA solder joint standoff 0.52mm to adjust the displacement-loading data of the master's thesis of Lee, T. K. in 2007. And continue with using the material parameters and kernel function of Endochronic cyclic viscoplasticity to simulate cyclic stress-strain curve under proportional displacement path. Then using the effective inelastic strain and effective stress , the relation was established.
This paper(1) aim to employ damage effective strain in parameter that depend on elastic strain energy density release rate and damage rate. (2)Using the definition of intrinsic damage time to establish evolution equation of intrinsic damage under cyclic proportional displacement path. This paper purpose the power form relation between damage accumulate rate and numbers of cycle N. Then damage factor can be derived from the relation, by cyclic loading amplitude vs. N data could compute and n. The results find that depend on , and , n is independence from . Endochronic fatigue life prediction under proportional displacement path , is independence from , but , therefore the result of figure vs. depend on , the result under the different scope of , Coffin-Manson relationship can be expressed by straight lines.
[1] Stolkarts, V., Keer, L.M. and Fine, M.E., “Damage Evolution Governed by Microcrack Nucleation with Application to the Fatigue of 63Sn-37Pb Solder,” J. of Mechanics and Physics of Solid, Vol.47, pp.2451-2468, 1999.
[2] Park, T. S. and Lee, S. B., “Isothermal Low Cycle Fatigue Test of Sn/3.5Ag/0.75Cu and 63Sn/37Pb Solder Joint under Mixed-Mode Loading Cases,” Electronic Components and Technology Conference, pp.979-984, 2002.
[3] Lee, C. F. and Shieh, T. J., “Theory of Endochronic Cyclic Viscoplasticity of Eutectic Tin/Lead Solder Alloy,” J. of Mechanics, Vol.22, No.3, pp.181-191, 2006.
[4] Lee, C. F. and Chen, Y. C., “Thermodynamic Formulation of Endochronic Cyclic Viscoplasticity with Damage-Application to Eutectic Sn/Pb Solder Alloy,” J. of Mechanics, Vol. 23, No.4, pp.433-444, 2007.
[5] 李泰廣,“Sn/3.5Ag/0.75Cu銲點試片在循環比例位移路徑下含循環損傷內涵時間黏塑性理論之應用”,碩士論文-國立成功大學工程科學系,2007。
[6] Lee, C. F. and Lee, Z. H., “Predicting Fatigue Initiation Life of Sn/3.8Ag/0.7Cu Solder Using Endochronic Cyclic Damage-Coupled Viscoplastic Theory,” J. of Mechanics, Vol. 24, No.4, pp.369-377, 2008.
[7] Wei, Y., Lau, K. J., Vianco, P., and Fang, H. E., “Behavior of Lead-Free Solder under Thermomechanical Loading,” ASME J. Electronic Packing., Vol. 126, pp. 367-373, 2004.
[8] Park, T. S. and Lee, S. B., “Low Cycle Fatigue Testing of Ball Grid Array Solder Joints under Mixed-Mode Loading Conditions,” ASME J. Electronic Packing., Vol. 127, pp. 237-244, 2005.
[9] Park, T. S., and Lee, S. B., “Mechanical Fatigue Tests of Solder Joint under Mixed-Mode Loading Cases,” 2001 Int’1 Sym. Electronic Materials and Packaging, (C) 2001 IEEE, pp.438-443.
[10] Park, T.S., and Lee, S.B., “Cyclic Stress-Strain Measurement Tests of Sn 3.5Ag 0.75Cu Solder Joint,” 2002 Int’1 Sym. Electronic Materials and Packaging, (C) 2002 IEEE,pp.317-323.
[11] Ohguchi, K., Sasaki, K., Ishibashi, M., and Hoshino, T., “Plasticity-Creep Separation Method for Viscoplastic Deformation of Lead-Free Solders,” JSME, Series A, 47, pp.371-379,2004.
[12] Shang, J. K., Zeng, Q. L., Zhang, L. and Zhu, Q. S., “Mechanical Fatigue of Sn-rich Pb-free Solder Alloys,” J. of Mater. Sci : Mater. in Electron., Vol. 18(1-3), pp. 211-227, 2007.
[13] Lehman, L. P., Kinyanjui, R. K., Wang, J., Xing, Y., Zavalij, L., Borgesen, P. and Cotts, E. J., “Microstructure and Damage Evolution in Sn-Ag-Cu Solder Joints,” Electronic Components and Technology Conference, 2005.
[14] Zeng, Q., Wang, Z., Xian, A., and Shang, J., “Low Cycle Fatigue Behavior of Sn-3.8Ag-0.7Cu Lead-Free Solder,” Chinese J. Material Research., Vol. 18, pp. 11-17, 2004.
[15] Socie, D.F., Waill, L. A., and Dittmer, D. F., “Biaxial Fatigue of Inconel 718 Including Mean Stress Effects,” Multiaxial Fatigue, ASTM STP 853, Miller, K. J. and Brown, M. W., Eds., American Society for Testing and Materials, Philadelphia, pp. 463-481, 1985.
[16] Lee, K. O., Yu, J., Park, T. S. and Lee, S. B., “Low Cycle Fatigue Characteristics of Sn-Based Solder Joints,” J. of Electronic Materials , Vol. 33, No.4, pp. 249-257, 2004.
[17] Brown, M. W. and Miller, K. J., “A Theory for Fatigue Failure under Multiaxial Stress-Strain Conditions,” Proceedings of the Institution of Mechanical Engineers, Vol. 187, No. 65, pp. 745-755, 1973.
[18] 林紘毅,“Sn/3.5Ag/0.75Cu銲錫受循環混合負載下含疲勞損傷之內涵時間黏塑性理論之研究”,碩士論文-國立成功大學工程科學系,2006。
[19] Lohr, R. D. and Ellison, E. G., Fatigue of Engineering Materials and Structures,Vol.3,pp.1-17,1980.
[20] 周佳樺,“不同負載模式對錫-銀-銅無鉛銲錫接點低週疲勞行為之影響”,碩士論文-國立中央大學機械工程所,2007。
[21] Kandil, F. A., Brown, M. W., and Miller, K. J., “Biaxial Low-Cycle Fatigue Fracture of 316 Stainless Steel of Evaluated Temperatures,” pp. 203-210 in Mechanical Behavior and Nuclear Applications of Stainless Steel at Elevated Temperatures, Book 280, The Metals Society, London, 1982.