| 研究生: |
郭瑞陽 Kuo, Ruei-Yang |
|---|---|
| 論文名稱: |
切削條件與車刀片溝槽幾何對斷屑效能之影響 Effect of Turning Conditions and Insert Groove Geometry on Chip Breaking Performance |
| 指導教授: |
王俊志
Wang, Jiunn-Jyh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 車刀片斷屑槽 、切削條件 、斷屑效能 、田口分析 、反應曲面法 |
| 外文關鍵詞: | insert groove, turning conditions, chip breaking, Taguchi method, response surface methodology |
| 相關次數: | 點閱:88 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在自動化生產的時代,加工中心等具備自動換刀機制的加工機台是相當主要的生產工具。由於其刀具眾多,只要一把刀斷屑不良就可能影響製程的精度與機器的運作,因此在設計車刀時,斷屑槽的幾何設計是相當重要的一環。本文針對捨棄式車刀片進行斷屑槽設計之研究,利用田口方法,以切屑厚度對其捲曲半徑之比值作為刀片斷屑性能之指標,探討斷屑槽幾何對刀片斷屑性能的影響,並利用反應曲面法建立一切削條件與斷屑槽幾何對斷屑效能影響的評估模型,作為刀片設計者之參考依據。模擬分析與驗證實驗的結果皆顯示,切削條件中的進給量對於斷屑性能有顯著的影響。而車刀片斷屑槽設計參數中選擇較大的斷屑槽進入角度與後牆高度,以及較小的槽寬,對於斷屑能力的提升有正向的幫助,其中又以斷屑槽寬的影響最為顯著。
Machining centers with automatic tool changer have been widely used in manufacturing. With so many tools in a machining center, one of the tools with poor chip breaking performance could cause adverse effect on the manufacturing process. Therefore, insert groove geometry is an important part of turning tool design. In this article, groove geometry of turning insert has been studied. The ratio of chip thickness to chip curl radius is taken as the index of chip breaking performance. Taguchi method is applied to analyze the contribution to chip breaking performance of each geometric parameter. Response surface methodology is used to construct a model evaluating the effect of turning conditions and groove geometry on chip breaking performance. The result of this study shows that the feed rate significantly affects chip breaking performance, and that insert with larger land angle, higher back wall and wider groove is more effective in chip breaking. In those parameters of insert groove, the width of groove has greater contribution to chip breaking than the others.
[1] Bagci, Eyup, & Seref Aykut., “A study of Taguchi optimization method for identifying optimum surface roughness in CNC face milling of cobalt-based alloy (stellite 6),” The International Journal of Advanced Manufacturing Technology 29.9-10, pp. 940-947, 2006.
[2] Bäker, M., Rösler, J., & Siemers, C., “A finite element model of high speed metal cutting with adiabatic shearing,” Computers & Structures, 80(5–6), pp. 495-513, 2002.
[3] Barge, M., Hamdi, H., Rech, J., & Bergheau, J. M., “Numerical modelling of orthogonal cutting: influence of numerical parameters,” Journal of Materials Processing Technology, 164–165(0), pp. 1148-1153, 2005.
[4] Choi, J. P., & Lee, S. J., “Efficient chip breaker design by predicting the chip breaking performance,” International Journal of Advanced Manufacturing Technology, 17(7), pp. 489-497, 2001.
[5] Grzesik, W., Advanced machining processes of metallic materials: theory, modelling and applications, Elsevier, 2008.
[6] Gullu, A., & Karabulut, S., “Dynamic Chip Breaker Design for Inconel 718 Using Positive Angle Tool Holder,” Materials and Manufacturing Processes, 23(8), pp. 852-857, 2008.
[7] Gurbuz, H., Kurt, A., Ciftci, I., & Seker, U., “The Influence of Chip Breaker Geometry on Tool Stresses in Turning,” Strojniški vestnik-Journal of Mechanical Engineering, 57(2), pp. 91-99, 2011.
[8] Jawahir, I., & Fang, X., “A knowledge-based approach for designing effective grooved chip breakers—2D and 3D chip flow, chip curl and chip breaking,” The International Journal of Advanced Manufacturing Technology, 10(4), pp. 225-239, 1995.
[9] Kelner, V., Grondin, G., Léonard, O., & Moreau, S., “Multi-objective optimization of a fan blade by coupling a genetic algorithm and a parametric flow solver,” Paper presented at the 6th International Conference on Evolutionary and Deterministic Methods for Design, Optimisation and Control with Applications to Industrial and Societal Problems (EUROGENÆ2005). Munich, 2005.
[10] Kim, H. G., Sim, J. H., & Kweon, H. J., “Performance evaluation of chip breaker utilizing neural network,” Journal of Materials Processing Technology, 209(2), pp. 647-656, 2009.
[11] Kiyak, M., Altan, M., & Altan, E., “Prediction of chip flow angle in orthogonal turning of mild steel by neural network approach,” International Journal of Advanced Manufacturing Technology, 33(3-4), pp. 251-259, 2007.
[12] Krishankant, Jatin Taneja, Mohit Bector, Rajesh Kumar, “Application of Tagichi method for optimizing turning process by the effects of machining parameters,” International Journal of Engineering and Advanced Technology, 2(1), pp. 263-274, 2012.
[13] Lesuer, D., Experimental investigation of material models for Ti-6Al-4V and 2024-T3, FAA Report DOT/FAA/AR-00/25, 2000.
[14] Maranhão, C., & Paulo Davim, J., “Finite element modelling of machining of AISI 316 steel: numerical simulation and experimental validation,” Simulation Modelling Practice and Theory, 18(2), pp.139-156, 2010.
[15] Marusich, T. D., Thiele, J. D., & Brand, C. J., “Simulation and analysis of chip breakage in turning processes,” Technical Paper Presented in Caterpillar Inc, pp. 1-10, 2001.
[16] Metals Handbook, 10th ed., vol. 1, ASM International Handbook Committee., ASM International, Materials Park, OH, 1990.
[17] Nakayama, K., “A study on chip-breaker.” Bulletin of JSME, 5(17), pp. 142-150, 1962.
[18] Palanikumar, K., “Application of Taguchi and response surface methodologies for surface roughness in machining glass fiber reinforced plastic by PCD tooling,” The International Journal of Advanced Manufacturing Technology, 36(1-2), pp. 19-27, 2008.
[19] Rahman, M., Seah, K., Li, X., & Zhang, X., “A three-dimensional model of chip flow, chip curl and chip breaking under the concept of equivalent parameters,” International Journal of Machine Tools and Manufacture, 35(7), pp. 1015-1031, 1995.
[20] Samad, A., & Kim, K., “Shape optimization of an axial compressor blade by multi-objective genetic algorithm,” Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 222(6), 599-611, 2008.
[21] Samantaray, D., Mandal, S., & Bhaduri, A., “A comparative study on Johnson Cook, modified Zerilli–Armstrong and Arrhenius-type constitutive models to predict elevated temperature flow behavior in modified 9Cr–1Mo steel,” Computational Materials Science, 47(2), pp. 568-576, 2009.
[22] Sivanandam, S. N, & Deepa, S. N., Introduction to Genetic Algorithms, Springer Science & Business Media, 2007.
[23] Shaw, M., Metal Cutting Principles–Oxford Series on Advanced Manufacturing, Publ. Oxford University Press, New York (USA), 2005.
[24] Sreekala, P., & Visweswararao, K., “A Methodology for Chip Breaker Design at Low Feed Turning of Alloy Steel using Finite Element Modeling Methods,” International Journal of Mechanical Engineering and Technology, 3(2), pp. 263-273, 2012.
[25] Thamizhmanii, S., S. Saparudin, & S. Hasan, “Analysis of surface roughness by turning process using Taguchi method,” Journal of Achievements in Materials and Manufacturing Engineering, 20(1-2), pp. 503-506, 2007.
[26] Tounsi, N., Vincenti, J., Otho, A., & Elbestawi, M., “From the basic mechanics of orthogonal metal cutting toward the identification of the constitutive equation,” International Journal of Machine Tools and Manufacture, 42(12), pp. 1373-1383, 2002.
[27] Wang, M. Y., Chang, H. Y., “Experimental study of surface roughness in slot end milling AL2014-T6,” International Journal of Machine Tools & Manufacture, 44(1), pp. 51-57, 2004
[28] Worthington, B., & Rahman, M., “Predicting breaking with groove type breakers,” International Journal of Machine Tool Design and Research, 19(3), pp. 121-132, 1979
[29] Yoon, H.-S., Wu, R., Lee, T.-M., & Ahn, S.-H., “Geometric optimization of micro drills using Taguchi methods and response surface methodology,” International Journal of Precision Engineering and Manufacturing, 12(5), pp. 871-875, 2011.
[30] 山高刀具車削核心課程,台灣山高刀具公司核心課程講義,2013
[31] 李輝煌,田口方法-品質設計的原理與實務,高立圖書有限公司,2012
[32] 黎正中,實驗設計與分析,高立圖書有限公司,1998