簡易檢索 / 詳目顯示

研究生: 廖文宇
Liao, Wen-Yu
論文名稱: 製造具有高靈敏感測性能/高發光效率之電漿子奈米結複合材
Fabrication of Plasmonic Nanojunction Composites with Highly Sensitive Sensing Performance/High Emission Efficiency
指導教授: 許蘇文
Hsu, Su-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 112
中文關鍵詞: 電漿子奈米晶體二聚體奈米結奈米複合材料電漿子耦合效應
外文關鍵詞: plasmonic nanocrystals, dimer nanojunctions, nanocomposites, plasmonic coupling effect
相關次數: 點閱:85下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主旨為將銀奈米晶體(silver nanocube, AgNC)所形成之二聚體奈米結 (dimer nanojunctions),因AgNC晶體間的強電漿子耦合效應(plasmonic coupling effect),使其適用於生物以及化學等感測器。一般製造大規模的奈米結較為常用的方法為直接寫入技術(direct-write techniques),但該技術較複雜且花費高,並且於控制奈米二聚體中晶體間的次奈米級(sub-nanoscale)間距上有其限制。在此,我們證明了可利用逐層沉積(layer by layer deposition)方法以及奈米晶體自組裝技術製造具有可控制晶體間距、構形(conformation) 以及二聚體數量的大尺寸均勻之二聚體奈米結複合材。在高分子基質中利用奈米晶體之自組裝製備大尺寸的高品質的二聚體奈米結,其中高分子基質的厚度對調節奈米晶體間的作用力有著重要作用,可於熱處理過程中形成不同構形之二聚體奈米結,如垂直二聚體(vertical dimer)以及水平二聚體(horizontal dimer)。對大尺寸二聚體奈米結的光學性質而言,有很大的程度會受到奈米晶體間電漿子耦合效應強弱影響(此電漿子耦合效應會因奈米結之構形變化) 。與純的高分子薄膜相比,具有二聚體奈米結之複合材因奈米晶體間的強電漿子耦合之效應,導致二聚體奈米結周遭之化學分子震盪所產生之拉曼散射之化學訊號具有約為1000倍的增強因子(enhancement factor),這使得具有二聚體奈米結之複合材適合用於需要高靈敏感測之領域,如生物學、生物醫學和化學領域。
    電漿子奈米晶體在外在光源激發下可以在其周圍生熱電子(hot electrons)且熱電子會於奈米晶體上震盪(oscillation)產生電磁場,此奈米晶體周遭之電磁場會因與鄰近奈米晶體之電磁場產生耦合效應而增強其周遭之電磁場增強,此二聚體奈米結周圍因強電磁場進而增加大量熱電子之產生,這些熱電子可與奈米結附近之發光材料相互作用,導致發光材料的發光效應產生變化。本文將有機染料或半導體量子點兩種不同的發光材料導入電漿子二聚體奈米結中生成奈米複合材料,以研究於電漿子誘導電磁場(plasmon-induced electromagnetic field)下的發光材料之發光效應(emission efficiency)的變化。於外在光源激發下二聚體奈米結複合材料的發光增強因數(emission enhancement factor)強烈仰賴於(1)電子轉移的路徑和驅動力:受發光材料的軌域能階和二聚體奈米結電漿子共振模式所產生之能階的相對關係所控制;(2)二聚體奈米結周圍產生熱電子的位置和數量:由二聚體奈米結構形和激發光的強度/波長控制。在經過仔細控制外在光源激發條件(強度/波長),由有機染料或半導體量子點構成的奈米複合材之發光增強因子分別可達到300%與700%。這些結果為設計用於光激發之光電元件、固態照明和生物感測等需要高發光效應複合材料之應用提供了一個可行的方向。

    Plasmonic coupling between nanojunctions showed potential applications in bio/chemical sensing. The most common method of fabricating large-scale nanojunctions was using direct-writing techniques, such as lithography. There were some drawbacks to this approach: it is complicated and expensive, and sub-nanoscale spacing between nanocrystals was poorly controlled. Here, we demonstrated that layer-by-layer deposition and polymer-directed assembly of nanocrystals can be integrated to fabricate large-scale dimer nanojunctions with controllable spacing, conformations, and quantity of dimer nanojunctions. When silver nanocubes (AgNCs) are used as building blocks to fabricate high-quality dimer nanojunctions in the polymer matrix, the thickness of the polymer matrix played an important role in tuning the inter-plane and intra-plane interactions between nanocrystals, resulting in different conformational dimer nanojunctions.The optical properties of large-scale dimer nanojunctions strongly depended on their conformations, which were caused by electromagnetic field coupling, leading to generate hot electrons, between the nanocrystals. Hot spots in both types of dimer nanojunctions can be used to amplify chemical signals of the Raman scattering signals with an enhancement factor (EF) of about 103 compared with the pure polymer film. This fabrication technique can produce high-quality and quantitatively controllable dimer nanojunctions structures with highly sensitive sensing applications in the fields of biology, biomedicine, and chemistry.
    Plasmonic nanojunctions can generate hot electrons around them under irradiation, and these hot electrons can interact with the emissive materials around the plasmonic nanojunctions, resulting in a change in the emission behavior of emissive materials. Here we introduced two different emissive materials, organic dye, and semiconductor quantum dot, into dimer nanojunctions to generate nanocomposites to study the changes in the emission enhancement factors of emissive materials under plasmon-induced electromagnetic fields. Under carefully controlled irradiation conditions (wavelength/intensity), the emission enhancement factors of nanocomposites composed of organic dye or semiconductor quantum dot can reach 300% and 700%, respectively. These results paved the way for designing highly emissive composites for optically stimulated optoelectronic devices, solid-state lighting, and biosensing.

    Keywords: plasmonic nanocrystals, dimer nanojunctions, nanocomposites, plasmonic coupling effect.

    中文摘要I Extended abstract IV 致謝XXXI 目錄XXXIII 表目錄 XXXV 圖目錄XXXVI 第一章 緒論1 第二章 材料與實驗方法11 2-1 實驗藥品及材料11 2-2 儀器設備13 2-3實驗步驟15 2-3-1奈米銀立方體晶體製備奈米銀立方體晶體的合成15 2-3-2製造大尺寸奈米銀立方體晶體二聚體奈米結17 2-3-3製造AgNCs-QDs-AgNCs三明治結構20 2-3-4製造大尺寸二聚體奈米結於R6G@PMMA 矩陣23 2-3-5發光材料-電漿子二聚體奈米結複合材PL光學量測26 第三章 大尺寸電漿子二聚體奈米結 28 3-1 大尺寸電漿子二聚體奈米結的製備28 3-1-1高分子奈米晶體複合材中的AgNCs覆蓋率與高分子基質厚度之關係30 3-1-2藉由控制高分子奈米晶體複合材中的高分子基質厚度製造大尺寸電漿子晶體二聚體奈米結46 3-1-3 AgNCs 自組裝結構之熱穩定性探討54 3-2具有電漿子奈米晶體二聚體奈米結之複合材的光學性質63 3-3 大尺寸電漿子晶體二聚體奈米結複合材之應用I:高靈敏之感測器70 3-4 大尺寸電漿子晶體二聚體奈米結複合材之應用I:發光增強效應75 3-4-1 電漿子誘導電磁場對複合材中羅丹明6G的發光效率之影響77 3-4-2 電漿子誘導電磁場對複合材中CdSe量子點的發光效率之影響90 第四章 結論103 第五章 參考文獻105

    1. Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P., Biosensing with plasmonic nanosensors. Nature Materials 2008, 7 (6), 442-453.
    2. Peiris, S.; McMurtrie, J.; Zhu, H.-Y., Metal nanoparticle photocatalysts: emerging processes for green organic synthesis. Catalysis Science & Technology 2016, 6 (2), 320-338.
    3. Adams, S. M.; Campione, S.; Caldwell, J. D.; Bezares, F. J.; Culbertson, J. C.; Capolino, F.; Ragan, R., Non-lithographic SERS substrates: tailoring surface chemistry for Au nanoparticle cluster assembly. Small 2012, 8 (14), 2239-49.
    4. Hooshmand, N.; Bordley, J. A.; El-Sayed, M. A., Are Hot Spots between Two Plasmonic Nanocubes of Silver or Gold Formed between Adjacent Corners or Adjacent Facets? A DDA Examination. Journal of Physical Chemistry Letters 2014, 5 (13), 2229-2234.
    5. Le Ru, E. C.; Grand, J.; Sow, I.; Somerville, W. R. C.; Etchegoin, P. G.; Treguer-Delapierre, M.; Charron, G.; Félidj, N.; Lévi, G.; Aubard, J., A Scheme for Detecting Every Single Target Molecule with Surface-Enhanced Raman Spectroscopy. Nano Letters 2011, 11 (11), 5013-5019.
    6. Li, J.; Skeete, Z.; Shan, S.; Yan, S.; Kurzatkowska, K.; Zhao, W.; Ngo, Q. M.; Holubovska, P.; Luo, J.; Hepel, M.; Zhong, C.-J., Surface Enhanced Raman Scattering Detection of Cancer Biomarkers with Bifunctional Nanocomposite Probes. Analytical Chemistry 2015, 87 (21), 10698-10702.
    7. Wang, A. X.; Kong, X., Review of Recent Progress of Plasmonic Materials and Nano-Structures for Surface-Enhanced Raman Scattering. Materials (Basel) 2015, 8 (6), 3024-3052.
    8. Yaraki, M. T.; Tan, Y. N., Metal Nanoparticles-Enhanced Biosensors: Synthesis, Design and Applications in Fluorescence Enhancement and Surface-enhanced Raman Scattering. Chemistry-an Asian Journal 2020, 15 (20), 3180-3208.
    9. Sharma, B.; Frontiera, R. R.; Henry, A.-I.; Ringe, E.; Van Duyne, R. P., SERS: Materials, applications, and the future. Materials Today 2012, 15 (1), 16-25.
    10. Fleischmann, M.; Hendra, P. J.; McQuillan, A. J., Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters 1974, 26 (2), 163-166.
    11. Xu, H. X.; Bjerneld, E. J.; Kall, M.; Borjesson, L., Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Physical Review Letters 1999, 83 (21), 4357-4360.
    12. Michaels, A. M.; Nirmal, M.; Brus, L. E., Surface Enhanced Raman Spectroscopy of Individual Rhodamine 6G Molecules on Large Ag Nanocrystals. Journal of the American Chemical Society 1999, 121 (43), 9932-9939.
    13. Chen, C.; Liao, M.; Shan, B.; Li, M., In Situ Observation of Thermally Induced Structural Transitions in Vacancy-Doped Cuprous Telluride (Cu2–xTe) Nanowires Using Raman Spectroscopy. The Journal of Physical Chemistry C 2019, 123 (40), 24763-24771.
    14. Petráková, V.; Sampaio, I. C.; Reich, S., Optical Absorption of Dye Molecules Remains Unaffected by Submonolayer Complex Formation with Metal Nanoparticles. The Journal of Physical Chemistry C 2019, 123 (28), 17498-17504.
    15. Stiles, P. L.; Dieringer, J. A.; Shah, N. C.; Van Duyne, R. P., Surface-Enhanced Raman Spectroscopy. Annual Review of Analytical Chemistry 2008, 1 (1), 601-626.
    16. Gopinath, S. C. B., Biosensing applications of surface plasmon resonance-based Biacore technology. Sensors and Actuators B: Chemical 2010, 150 (2), 722-733.
    17. Qi, G.; Li, H.; Zhang, Y.; Li, C.; Xu, S.; Wang, M.; Jin, Y., Smart Plasmonic Nanorobot for Real-Time Monitoring Cytochrome c Release and Cell Acidification in Apoptosis during Electrostimulation. Analytical Chemistry 2019, 91 (2), 1408-1415.
    18. Shafer-Peltier, K. E.; Haynes, C. L.; Glucksberg, M. R.; Van Duyne, R. P., Toward a glucose biosensor based on surface-enhanced Raman scattering. J Am Chem Soc 2003, 125 (2), 588-93.
    19. Bedford, E. E.; Spadavecchia, J.; Pradier, C.-M.; Gu, F. X., Surface Plasmon Resonance Biosensors Incorporating Gold Nanoparticles. Macromolecular Bioscience 2012, 12 (6), 724-739.
    20. Hoa, X. D.; Kirk, A. G.; Tabrizian, M., Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress. Biosens Bioelectron 2007, 23 (2), 151-60.
    21. Homola, J.; Yee, S. S.; Gauglitz, G., Surface plasmon resonance sensors: review. Sensors and Actuators B: Chemical 1999, 54 (1), 3-15.
    22. Shalabney, A.; Abdulhalim, I., Sensitivity-enhancement methods for surface plasmon sensors. Laser & Photonics Reviews 2011, 5 (4), 571-606.
    23. Kabashin, A. V.; Evans, P.; Pastkovsky, S.; Hendren, W.; Wurtz, G. A.; Atkinson, R.; Pollard, R.; Podolskiy, V. A.; Zayats, A. V., Plasmonic nanorod metamaterials for biosensing. Nat Mater 2009, 8 (11), 867-71.
    24. Law, W.-C.; Yong, K.-T.; Baev, A.; Hu, R.; Prasad, P. N., Nanoparticle enhanced surface plasmon resonance biosensing: Application of gold nanorods. Opt. Express 2009, 17 (21), 19041-19046.
    25. Law, W.-C.; Yong, K.-T.; Baev, A.; Prasad, P. N., Sensitivity Improved Surface Plasmon Resonance Biosensor for Cancer Biomarker Detection Based on Plasmonic Enhancement. ACS Nano 2011, 5 (6), 4858-4864.
    26. Cheng, Y.; Wang, M.; Borghs, G.; Chen, H., Gold Nanoparticle Dimers for Plasmon Sensing. Langmuir 2011, 27 (12), 7884-7891.
    27. Ding, S.-Y.; Yi, J.; Li, J.-F.; Ren, B.; Wu, D.-Y.; Panneerselvam, R.; Tian, Z.-Q., Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nature Reviews Materials 2016, 1 (6), 16021.
    28. Radziuk, D.; Moehwald, H., Prospects for plasmonic hot spots in single molecule SERS towards the chemical imaging of live cells. Physical Chemistry Chemical Physics 2015, 17 (33), 21072-21093.
    29. Tanabe, K., Field Enhancement around Metal Nanoparticles and Nanoshells: A Systematic Investigation. The Journal of Physical Chemistry C 2008, 112 (40), 15721-15728.
    30. Jain, P. K.; Huang, W.; El-Sayed, M. A., On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation. Nano Letters 2007, 7 (7), 2080-2088.
    31. Hsu, S.-W.; Ngo, C.; Tao, A. R., Tunable and Directional Plasmonic Coupling within Semiconductor Nanodisk Assemblies. Nano Letters 2014, 14 (5), 2372-2380.
    32. Yang, X.; Xiao, G.; Lu, Y.; Li, G., Narrow plasmonic surface lattice resonances with preference to asymmetric dielectric environment. Opt. Express 2019, 27 (18), 25384-25394.
    33. Humphrey, A. D.; Meinzer, N.; Starkey, T. A.; Barnes, W. L., Surface Lattice Resonances in Plasmonic Arrays of Asymmetric Disc Dimers. ACS Photonics 2016, 3 (4), 634-639.
    34. Kofke, M. J.; Waldeck, D. H.; Walker, G. C., Composite nanoparticle nanoslit arrays: a novel platform for LSPR mediated subwavelength optical transmission. Opt. Express 2010, 18 (8), 7705-7713.
    35. Yang, A.; Hoang, T. B.; Dridi, M.; Deeb, C.; Mikkelsen, M. H.; Schatz, G. C.; Odom, T. W., Real-time tunable lasing from plasmonic nanocavity arrays. Nat Commun 2015, 6, 6939.
    36. Bonakdar, A.; Rezaei, M.; Brown, R. L.; Fathipour, V.; Dexheimer, E.; Jang, S. J.; Mohseni, H., Deep-UV microsphere projection lithography. Opt. Lett. 2015, 40 (11), 2537-2540.
    37. Karim, W.; Tschupp, S. A.; Oezaslan, M.; Schmidt, T. J.; Gobrecht, J.; van Bokhoven, J. A.; Ekinci, Y., High-resolution and large-area nanoparticle arrays using EUV interference lithography. Nanoscale 2015, 7 (16), 7386-7393.
    38. Min, Y.; Akbulut, M.; Kristiansen, K.; Golan, Y.; Israelachvili, J., The role of interparticle and external forces in nanoparticle assembly. Nature Materials 2008, 7 (7), 527-538.
    39. Akcora, P.; Liu, H.; Kumar, S. K.; Moll, J.; Li, Y.; Benicewicz, B. C.; Schadler, L. S.; Acehan, D.; Panagiotopoulos, A. Z.; Pryamitsyn, V.; Ganesan, V.; Ilavsky, J.; Thiyagarajan, P.; Colby, R. H.; Douglas, J. F., Anisotropic self-assembly of spherical polymer-grafted nanoparticles. Nat Mater 2009, 8 (4), 354-9.
    40. Lin, Y.; Böker, A.; He, J.; Sill, K.; Xiang, H.; Abetz, C.; Li, X.; Wang, J.; Emrick, T.; Long, S.; Wang, Q.; Balazs, A.; Russell, T. P., Self-directed self-assembly of nanoparticle/copolymer mixtures. Nature 2005, 434 (7029), 55-9.
    41. Nykypanchuk, D.; Maye, M. M.; van der Lelie, D.; Gang, O., DNA-guided crystallization of colloidal nanoparticles. Nature 2008, 451 (7178), 549-552.
    42. Park, S. Y.; Lytton-Jean, A. K.; Lee, B.; Weigand, S.; Schatz, G. C.; Mirkin, C. A., DNA-programmable nanoparticle crystallization. Nature 2008, 451 (7178), 553-6.
    43. Shenhar, R.; Norsten, T. B.; Rotello, V. M., Polymer-Mediated Nanoparticle Assembly: Structural Control and Applications. Advanced Materials 2005, 17 (6), 657-669.
    44. Laxminarayana, G. K.; Rozin, M.; Smith, S.; Tao, A. R., Modular, polymer-directed nanoparticle assembly for fabricating metamaterials. Faraday Discussions 2016, 186 (0), 489-502.
    45. Richardson, J. J.; Björnmalm, M.; Caruso, F., Technology-driven layer-by-layer assembly of nanofilms. Science 2015, 348 (6233), aaa2491.
    46. Wang, Y.; Angelatos, A. S.; Caruso, F., Template Synthesis of Nanostructured Materials via Layer-by-Layer Assembly. Chemistry of Materials 2008, 20 (3), 848-858.
    47. Shyha, I.; Soo, S.; Aspinwall, D.; Bradley, S., Effect of laminate configuration and feed rate on cutting performance when drilling holes in carbon fibre reinforced plastic composites. Journal of Materials Processing Technology 2010, 210, 1023-1034.
    48. Xiao, F.-X.; Miao, J.; Liu, B., Layer-by-Layer Self-Assembly of CdS Quantum Dots/Graphene Nanosheets Hybrid Films for Photoelectrochemical and Photocatalytic Applications. Journal of the American Chemical Society 2014, 136 (4), 1559-1569.
    49. Baumberg, J. J.; Aizpurua, J.; Mikkelsen, M. H.; Smith, D. R., Extreme nanophotonics from ultrathin metallic gaps. Nature Materials 2019, 18 (7), 668-678.
    50. Zhang, R.; Zhang, Y.; Dong, Z. C.; Jiang, S.; Zhang, C.; Chen, L. G.; Zhang, L.; Liao, Y.; Aizpurua, J.; Luo, Y.; Yang, J. L.; Hou, J. G., Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 2013, 498 (7452), 82-86.
    51. Zrimsek, A. B.; Chiang, N. H.; Mattei, M.; Zaleski, S.; McAnally, M. O.; Chapman, C. T.; Henry, A. I.; Schatz, G. C.; Van Duyne, R. P., Single-Molecule Chemistry with Surface- and Tip-Enhanced Raman Spectroscopy. Chemical Reviews 2017, 117 (11), 7583-7613.
    52. Chen, J. I. L.; Chen, Y.; Ginger, D. S., Plasmonic Nanoparticle Dimers for Optical Sensing of DNA in Complex Media. Journal of the American Chemical Society 2010, 132 (28), 9600-9601.
    53. Farooq, S.; Rativa, D.; de Araujo, R. E., High Performance Gold Dimeric Nanorods for Plasmonic Molecular Sensing. Ieee Sensors Journal 2021, 21 (12), 13184-13191.
    54. Thacker, V. V.; Herrmann, L. O.; Sigle, D. O.; Zhang, T.; Liedl, T.; Baumberg, J. J.; Keyser, U. F., DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering. Nature Communications 2014, 5.
    55. Ye, J.; Van Dorpe, P., Plasmonic behaviors of gold dimers perturbed by a single nanoparticle in the gap. Nanoscale 2012, 4 (22), 7205-7211.
    56. Parzefall, M.; Szabo, A.; Taniguchi, T.; Watanabe, K.; Luisier, M.; Novotny, L., Light from van der Waals quantum tunneling devices. Nature Communications 2019, 10.
    57. Brongersma, M. L.; Halas, N. J.; Nordlander, P., Plasmon-induced hot carrier science and technology. Nature Nanotechnology 2015, 10 (1), 25-34.
    58. Narang, P.; Sundararaman, R.; Atwater, H. A., Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion. Nanophotonics 2016, 5 (1), 96-111.
    59. Cortes, E.; Xie, W.; Cambiasso, J.; Jermyn, A. S.; Sundararaman, R.; Narang, P.; Schlucker, S.; Maier, S. A., Plasmonic hot electron transport drives nano-localized chemistry. Nature Communications 2017, 8.
    60. Bek, A.; Jansen, R.; Ringler, M.; Mayilo, S.; Klar, T. A.; Feldmann, J., Fluorescence Enhancement in Hot Spots of AFM-Designed Gold Nanoparticle Sandwiches. Nano Letters 2008, 8 (2), 485-490.
    61. Liao, W.-Y.; Huang, J.-R.; Hsu, S.-W., Fabrication of a Large-Scale Plasmonic Nanojunction for Chemical Sensing. ACS Applied Nano Materials 2022, 5 (4), 5722-5732.
    62. Peng, S. L.; Chen, G. Y.; Hsu, S. W., Tuning the Optical and Electrical Properties of Polymer-Based Nanocomposites by Plasmon-Induced Electromagnetic Field. Advanced Materials Interfaces 2022, 9 (15).
    63. Van Dijk, M. A.; Lippitz, M.; Orrit, M., Far-field optical microscopy of single metal nanoparticles. Accounts of Chemical Research 2005, 38 (7), 594-601.
    64. Zheng, J.; Zhou, C.; Yu, M. X.; Liu, J. B., Different sized luminescent gold nanoparticles. Nanoscale 2012, 4 (14), 4073-4083.
    65. Zhang, W. D.; Wen, T.; Cheng, Y. Q.; Zhao, J. Y.; Gong, Q. H.; Lu, G. W., Intrinsic luminescence from metal nanostructures and its applications. Chinese Physics B 2018, 27 (9).
    66. Takemura, K.; Adegoke, O.; Suzuki, T.; Park, E. Y., A localized surface plasmon resonance-amplified immunofluorescence biosensor for ultrasensitive and rapid detection of nonstructural protein 1 of Zika virus. PLOS ONE 2019, 14 (1), e0211517.
    67. Afaneh, A. T.; Schreckenbach, G., Fluorescence Enhancement/Quenching Based on Metal Orbital Control: Computational Studies of a 6-Thienyllumazine-Based Mercury Sensor. The Journal of Physical Chemistry A 2015, 119 (29), 8106-8116.
    68. Tao, A. R.; Habas, S.; Yang, P., Shape Control of Colloidal Metal Nanocrystals. Small 2008, 4 (3), 310-325.
    69. Choi, S.-H.; Song, H.; Park, I. K.; Yum, J.-H.; Kim, S.-S.; Lee, S.; Sung, Y.-E., Synthesis of size-controlled CdSe quantum dots and characterization of CdSe–conjugated polymer blends for hybrid solar cells. Journal of Photochemistry and Photobiology A: Chemistry 2006, 179 (1), 135-141.
    70. Hsu, S. W.; Long, Y. H.; Subramanian, A. G.; Tao, A. R., Directed assembly of metal nanoparticles in polymer bilayers. Molecular Systems Design & Engineering 2018, 3 (2), 390-396.
    71. Jhang, W. L.; Li, C. J.; Wang, A. S.; Liu, C. W.; Hsu, S. W., Tunable Optical Property of Plasmonic-Polymer Nanocomposites Composed of Multilayer Nanocrystal Arrays Stacked in a Homogeneous Polymer Matrix. Acs Applied Materials & Interfaces 2020, 12 (46), 51873-51884.
    72. Yan, N.; Zhang, Y.; He, Y.; Zhu, Y.; Jiang, W., Controllable Location of Inorganic Nanoparticles on Block Copolymer Self-Assembled Scaffolds by Tailoring the Entropy and Enthalpy Contributions. Macromolecules 2017, 50 (17), 6771-6778.
    73. Heintz, J.; Markešević, N.; Gayet, E. Y.; Bonod, N.; Bidault, S., Few-Molecule Strong Coupling with Dimers of Plasmonic Nanoparticles Assembled on DNA. ACS Nano 2021, 15 (9), 14732-14743.
    74. Gao, B.; Arya, G.; Tao, A. R., Self-orienting nanocubes for the assembly of plasmonic nanojunctions. Nature Nanotechnology 2012, 7 (7), 433-437.
    75. On, C.; Tanyi, E. K.; Harrison, E.; Noginov, M. A., Effect of molecular concentration on spectroscopic properties of poly(methyl methacrylate) thin films doped with rhodamine 6G dye. Opt. Mater. Express 2017, 7 (12), 4286-4295.
    76. Maurya, S. K.; Yadav, D.; Goswami, D., Investigating Two-Photon-Induced Fluorescence in Rhodamine-6G in Presence of Cetyl-Trimethyl-Ammonium-Bromide. Journal of Fluorescence 2016, 26 (5), 1573-1577.
    77. Kim, H.; Wang, S.; Kim, S. H.; Son, Y. A., Design, Synthesis and Optical Property of Rhodamine 6G Based New Dye Sensor. Molecular Crystals and Liquid Crystals 2012, 566, 45-53.
    78. Bae, W. K.; Padilha, L. A.; Park, Y.-S.; McDaniel, H.; Robel, I.; Pietryga, J. M.; Klimov, V. I., Controlled Alloying of the Core–Shell Interface in CdSe/CdS Quantum Dots for Suppression of Auger Recombination. ACS Nano 2013, 7 (4), 3411-3419.
    79. Landry, M. L.; Morrell, T. E.; Karagounis, T. K.; Hsia, C.-H.; Wang, C.-Y., Simple Syntheses of CdSe Quantum Dots. Journal of Chemical Education 2014, 91 (2), 274-279.
    80. Nordell, K. J.; Boatman, E. M.; Lisensky, G. C., A Safer, Easier, Faster Synthesis for CdSe Quantum Dot Nanocrystals. Journal of Chemical Education 2005, 82 (11), 1697.
    81. Zeng, T.-W.; Liu, I. S.; Hsu, F.-C.; Huang, K.-T.; Liao, H.-C.; Su, W.-F., Effects of bifunctional linker on the performance of P3HT/CdSe quantum dot-linker-ZnO nanocolumn photovoltaic device. Opt. Express 2010, 18 (S3), A357-A365.

    下載圖示
    2026-01-01公開
    QR CODE