簡易檢索 / 詳目顯示

研究生: 王斈文
Wang, Hsueh-Wen
論文名稱: 探討加勁擋土牆地震中變位之震動台試驗
Shaking Table Tests for Investigating Seismic Displacements of Geosynthetic-reinforced Walls
指導教授: 黃景川
Huang, Ching-Chuan
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 91
中文關鍵詞: 加勁擋土牆模型地震力加載永久變位動態反應
外文關鍵詞: geosynthetic-reinforced wall, seismic load, permanent displacement, dynamic response
相關次數: 點閱:167下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用層狀剪力砂箱在震動台上施做一長、寬、高為840mm × 500 mm × 600mm之回包式加勁擋土牆模型,使用土壤材料為南投縣眉溪中上游河砂試體單位單位重γ_d=15 kN/m^3,藉由改變震動台輸入震波之頻率與形式和加勁材加勁程度來探討加勁擋土牆在地震中之變位與加速度反應等動態行為,並將試驗結果與設計規範和其他學者一起比較討論。
    由震動台模型試驗結果可知 : 一、加勁擋土牆在地震中之變位深受震波頻率的影響,地震引起之擋土牆變位在低頻震波條件之下最大,在高頻震波條件之下最小。二、藉由最大永久變位(D_max)與地表水平尖峰加速度(HPGA)之關係曲線所得到之臨界加速度值a_y隨震波頻率提高而增大。三、本研究正規化牆體變位曲線落在其他學者之曲線的右側,是因為本研究考慮了牆體臨界狀態之前的永久變位。四、加速度反應由增幅往減幅發展的過程與過去研究所建議的曲線相近,皆能以水平尖峰地表加速度為0.5g左右當作一個增減幅分界點。

    In present study, geosynthetic-reinforced walls were constructed in and a laminar box was used to contain the model wall in shaking table tests. The test medium used in this study is a river sand from Mei-Shi Nantou with a dry density of γ_d=15 kN/m^3. A series of model tests with variations peak accelerations and frequencies of base input motion and lengths of reinforcement was performed to investigate the dynamic behavior of the geosynthetic-reinforced walls. Results of a comparative study between the test results reported in the literature and those in the present study, the following conclusions were obtained:
    1. The seismic displacements are significantly affected by the frequency of base motion, i.e., seismic displacements increase with decreasing frequency of base motions, with identical values of horizontal peak ground acceleration (HPGA).
    2. The critical acceleration (a_y) obtained from the relationship between maximum permanent displacements and horizontal peak ground acceleration decreases as the frequency of base motion increases.
    3. The normalized displacement curves obtained here fall to the right of analytical and empirical curves reported in the literature, suggesting that a permanent displacement of the slope prior to the yielding of the slope exists which has not been considered on previous studies.
    4. Transitions from an amplification state to a de-amplification state at the wall crest occur at certain levels of input ground accelerations.

    摘要 I ABSTRACT II 致謝 V 表目錄 IX 圖目錄 X 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究內容 1 第二章 文獻回顧 2 2.1 Newmark (1965) 塊體滑動理論 2 2.2 Cai and Bathurst (1996) 計算地震變位之方法比較與討論 3 2.3 Huang et al. (2003) 921集集地震現地調查 5 2.4 Matsuo et al. (1998) 加勁擋土牆之震動台試驗 5 2.5 Krishna and Latha (2007) 回包式加勁擋土牆震動台試驗 5 2.6 Huang et al. (2010)和Huang et al. (2011) 加勁擋土牆之動態行為研究 7 2.7 Chopra (2001) 自由震盪衰減試驗(Decay of free vibration test) 8 第三章 實驗裝置與介紹 10 3.1 試驗土壤 10 3.2 加勁材料 10 3.3 層狀剪力砂箱與移動式霣落器 10 3.3.1 層狀剪力砂箱 10 3.3.2 移動式霣落器 10 3.4 量測與資料擷取系統 11 3.4.1 線性位移計 11 3.4.2 加速度計 11 3.4.3 應變片(Strain gauge) 11 3.4.4 模組化擷取系統 12 3.4.5 National Instruments Labview 軟體 12 3.5 MTS震動台系統 12 第四章 實驗方法與實驗說明 28 4.1 移動式霣落器霣落密度試驗 28 4.2 層狀剪力砂箱邊界效應影響試驗 29 4.3自由震盪衰減試驗(Decay of free vibration test)與白雜訊試驗(White noise test) 29 4.4 回包式加勁擋土牆之震動台試驗 30 4.5 實驗條件與波型模擬結果 31 第五章 實驗結果與分析 42 5.1 移動式霣落器霣落密度試驗結果 42 5.2層狀剪力砂箱邊界效應影響試驗結果 44 5.3自由震盪衰減試驗(Decay of free vibration test)與白雜訊試驗(White noise test)結果 48 5.3.1 自由震盪衰減試驗(Decay of free vibration test)結果 48 5.3.2白雜訊試驗(White noise test)試驗結果 52 5.4 回包式加勁擋土牆之震動台試驗結果 54 5.4.1 牆體變位情況討論 55 5.4.1.1 各組實驗之牆體變位變化過程 55 5.4.1.2 牆體最大永久變位(Dmax)與地表最大水平加速度(HPGA)之關係 62 5.4.1.3 正規化之牆體變位 64 5.4.2 牆體加速度反應 66 5.4.2.1 各組實驗牆體加速度反應變化過程 66 5.4.2.2 加速度增減幅反應 73 5.4.3 加勁材受力情況討論 76 5.4.4不規則波形加載試驗結果 80 5.4.5 牆面變形情況 83 第六章 結論與建議 87 6.1 結論 87 6.2 建議 89 參考文獻 90

    1. ASTM D4595 Test methods for tensile properties of geotextiles by the wide-width strip method. ASTM International, West Conshohocken, PA, USA.
    2. Bathurst, R. J. (1998) “Segmental retaining wall - seismic design manual” National Concrete Masonry Association, Herndon, VA, USA.
    3. Bathurs, R. J. and Cai, Z. (1995) “Pseudo-static seismic analysis of geosynthetic reinforced segmental retaining walls’’ Geosynthetics International, Vol. 2, No. 5, pp 789-832.
    4. Cai, Z. and Bathurs, R. J. (1996) “Deterministic sliding block methods for estimation seismic displacements of earth structures” Soil Dynamic and Earthquake Engineering, Vol. 15, No. 4,pp. 255-268.
    5. Chopra, A. K. (2001) “Dynamic of Structures” Prentice Hall, 2th ed, Chapter 2, pp. 39-64.
    6. Huang, C.-C., Chou, L.-H., and Tatsuoka, F. (2003) “Seismic displacements of geosynthetic-reinforced soil modular block walls” Geosynthetics International, Vol. 10, No. 1, pp. 2-23.
    7. Huang, C.-C. and Wu, S.-H. (2006) “Simplified approach for assessing seismic displacements of soil-retaining walls. Part I: geosynthetic-reinforced walls with modular block walls” Geosynthetics International, Vol. 13, No. 6, pp 219-233.
    8. Huang, C.-C., Horng, J.-C., Chang, Chueh, S.-Y., W.-J., Chiou, J.-S., and Chen, C.-H., (2010) “Dynamic behavior of reinforced slopes: horizontal acceleration response’’ Geosynthetics International, Vol. 17, No. 4, pp 207-219.
    9. Huang, C.-C., Horng, J.-C., Chang, W.-J., Chiou, J.-S., and Chen, C.-H., (2011) “Dynamic behavior of reinforced walls – horizontal displacement response” Geotextiles and Geomembranes, Vol. 29, pp. 257-267.
    10. Huang, C.-C. (2016) “Model tests on the bearing capacity of reinforced saturated sand ground’’ Geosynthetics International.
    11. Idriss, I. M. (1990) “Response of soft soil sites during earthquakes” Proceedings H. Bolton Seed Memorial Symposium, Vol. 2, No. 4, pp 273-289.
    12. Krishna, A. M. and Latha, G. M. (2007) “Seismic response of reinforced soil-retaining wall models using shaking-table tests” Geosynthetics International, Vol. 14, No. 6, pp.355-364.
    13. Matsuo, O., Tsutsumi, T., Yokoyama, K., and Saito, Y., (1998) “Shaking table tests and analyses of geosynthetic-reinforced soil retaining walls” Geosynthetics International, Vol. 5, No. 1-2,pp. 97-126.
    14. Newmark, N. M. (1965) “Effect of earthquake on dams and embankments” Geotechnique, Vol. 15, No 2, pp. 139-159.
    15. Segrestin, P. and Bastick, M. J. (1988) “Seismic design of reinforced earth retaining walls the contribution of finite element analysis” Proceedings of the International Geotechnical Symposium on Theory and Practice of Earth Reinforcement, pp. 577- 582.
    16. Whitman, R. V. and Liao, S. (1985) “Seismic design of gravity retaining walls” Miscellaneous Paper GL-85-1,Department of the Army, US Army Corps of Engineers, Washington, DC.

    下載圖示 校內:立即公開
    校外:2020-08-22公開
    QR CODE