簡易檢索 / 詳目顯示

研究生: 蔡孟修
Tsai, Meng-Hsiu
論文名稱: 以分子動力學研究鎳鈦記憶合金之擬彈性效應
The atomistic study on pseudoelastic effect of NiTi shape memory alloy
指導教授: 賴新一
Lai, Hsin-Yi
共同指導教授: 張怡玲
Chang, I-Ling
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 125
中文關鍵詞: 分子動力學相轉變行為形狀記憶效應擬彈性效應點缺陷及球型缺陷結構
外文關鍵詞: Molecular dynamics, Shape Memory Alloy, Phase Transformation Temperature, Pseudoelastic effect
相關次數: 點閱:102下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以分子動力學研究鎳鈦合金塊材之形狀記憶特性,觀察不同升降溫速率、不同模型尺寸、不同鎳含量比例與不同原子分佈的情況下對相轉變的影響。也探討鎳鈦合金塊材之擬彈性效應,在沃斯田體相下對完美模型、隨機點缺陷模型與中心球型缺陷模型進行循環加載模擬,使用W參數法分析加載過程中有無生成差排情況下對於相轉變的影響,並比較不同形式與比例之缺陷模型的相變與差排行為。
    在升降溫模擬結果得知,鎳鈦合金在高溫時以體心立方結構(沃斯田體相)穩定存在,在低溫時則相變為斜方體結構(麻田散體相),且相變溫度會隨著鎳含量增加而降低。此外,對於鎳含量為51%的鎳鈦合金而言,相轉變溫度不受其內部原子分佈位置影響,且在常溫300K下結構處於沃斯田體相,並以此狀態下進行循環加載模擬。
    在循環加載模擬結果得知,若加載中無差排情況下則會使結構處於更穩定的狀態,相變提前發生現象;若加載至差排情況下會使相變更難發生,相變應力提升現象。在比較缺陷模型之模擬結果得知,相變應力與差排應力皆會隨著缺陷比例增加而下降,且點缺陷對於相變造成的影響比球型缺陷大。本研究提供一套循環加載模擬的流程與方法,並在不同模型與不同加載情況下,得到彼此間與擬彈性效應的關係,作為往後研究鎳鈦記憶合金之擬彈性行為之參考。

    The shape memory properties of NiTi alloy bulks were investigated using molecular dynamics simulation. First, the phase transformation behaviors for various Ni composition ratios were studied under cooling and heating process. Different defect of models applied cyclic loading and the atomic configurations were inspected and further analyzed using both W parameter and slip vector. For the simulations, it was found that 51%NiTi is body-centered cubic structure (austenite) at high temperature and transforms to martensite phase at specific temperature. It was observed that the phase transformation temperature was affected by different Ni composition ratio, but the different atomic arrangement would have the same phase transformation temperature. For the defect of models under cyclic loading, it was found that the models have been more stable and the stress for stress-induced martensitic transformation has been found to decrease with the number of cycles. However, the models occurred dislocations during the loading process which would inhibit the phase transformation. We also observed the stress concentration effect that lead to the transformation stress decreased. Our results provide an atomic basis for further study of pseudoelastic effect on NiTi alloy bulks under cyclic loading.

    摘要I AbstractII 誌謝XI 目錄XII 表目錄XV 圖目錄XVI 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 形狀記憶合金擬彈性效應實驗文獻回顧 2 1.2.2 形狀記憶合金分子模擬文獻回顧 3 1.3 動機與目的 5 1.4 論文架構 5 第二章 基本理論與分析方法 7 2.1 形狀記憶合金基本理論 7 2.1.1 形狀記憶效應 7 2.1.2 形狀記憶合金之相轉變 8 2.2 分子動力學理論 8 2.1.1 基本理論與假設 8 2.1.2 分子間作用力與勢能函數 9 2.1.3 週期性邊界與最小映像法則 11 2.1.4 系綜觀念 12 2.1.5 初始條件設定 13 2.1.6 運動方程式 14 2.1.7 Velocity-Verlet演算法 14 2.1.8 截斷半徑法與表列法 15 2.1.9 原子級應力 17 2.3 參數分析方法 18 2.3.1 W參數分析法 18 2.3.2 滑移向量法 19 第三章 鎳鈦合金之相變溫度分析 33 3.1 原子模型 33 3.2 模擬流程 34 3.3 結果與討論 34 3.3.1 鎳鈦合金之相變溫度 34 3.3.2 升降溫速率的收斂性分析 35 3.3.3 模型尺寸的收斂性分析 36 3.3.4 鎳含量比例對於相變溫度影響 37 3.3.5 原子分佈對於相變溫度影響 38 第四章 鎳鈦合金之擬彈性效應 52 4.1 循環壓縮加載之模擬流程 52 4.2 循環壓縮完美模型之擬彈性效應 53 4.2.1 無差排行為之加載對於擬彈性效應影響 53 4.2.2 加載生成差排之模型對於擬彈性效應的影響 54 4.3 不同缺陷模型對於擬彈性效應的影響 57 4.3.1 隨機點缺陷與中心球型缺陷模型 57 4.3.2 無差排生成之加載模擬結果與分析 58 4.3.3 加載生成差排之模擬結果與分析 61 第五章 結論與未來展望 91 5.1 本文結論 91 5.2 未來展望 92 參考文獻 93 附錄A 96 B模型模擬結果 96 C模型模擬結果 111

    [1] S. Miyazaki, T. Imai, Y. Igo, and K. Otsuka, "Effect of cyclic deformation on the pseudoelasticity characteristics of Ti-Ni alloys," Metallurgical transactions A, vol. 17, no. 1, pp. 115-120, 1986.
    [2] C. Frick, S. Orso, and E. Arzt, "Loss of pseudoelasticity in nickel–titanium sub-micron compression pillars," Acta Materialia, vol. 55, no. 11, pp. 3845-3855, 2007.
    [3] J. San Juan, M. L. Nó, and C. A. Schuh, "Nanoscale shape-memory alloys for ultrahigh mechanical damping," Nature nanotechnology, vol. 4, no. 7, pp. 415-419, 2009.
    [4] J. San Juan and M. Nó, "Superelasticity and shape memory at nano-scale: Size effects on the martensitic transformation," Journal of Alloys and Compounds, vol. 577, pp. S25-S29, 2013.
    [5] C.-Y. Nien, H.-K. Wang, C.-H. Chen, S. Ii, S.-K. Wu, and C.-H. Hsueh, "Superelasticity of TiNi-based shape memory alloys at micro/nanoscale," Journal of Materials Research, vol. 29, no. 22, pp. 2717-2726, 2014.
    [6] L. C. Chang, "On Diffusionless Transformation in Au‐Cd Single Crystals Containing 47.5 Atomic Percent Cadmium: Characteristics of Single‐Interface Transformation," Journal of Applied Physics, vol. 23, no. 7, pp. 725-728, 1952.
    [7] W. J. Buehler, J. Gilfrich, and R. Wiley, "Effect of low‐temperature phase changes on the mechanical properties of alloys near composition TiNi," Journal of applied physics, vol. 34, no. 5, pp. 1475-1477, 1963.
    [8] W. Lai and B. Liu, "Lattice stability of some Ni-Ti alloy phases versus their chemical composition and disordering," Journal of Physics: Condensed Matter, vol. 12, no. 5, p. L53, 2000.
    [9] K.-i. Saitoh, T. Sato, and N. Shinke, "Atomic dynamics and energetics of martensitic transformation in nickel–titanium shape memory alloy," Materials transactions, vol. 47, no. 3, pp. 742-749, 2006.
    [10] D. Mutter and P. Nielaba, "Simulation of structural phase transitions in NiTi," Physical Review B, vol. 82, no. 22, p. 224201, 2010.
    [11] D. Mutter and P. Nielaba, "Simulation of the thermally induced austenitic phase transition in NiTi nanoparticles," The European Physical Journal B, vol. 84, no. 1, pp. 109-113, 2011.
    [12] D. Mutter and P. Nielaba, "Simulation of the shape memory effect in a NiTi nano model system," Journal of Alloys and Compounds, vol. 577, pp. S83-S87, 2013.
    [13] Y. Zhong, K. Gall, and T. Zhu, "Atomistic study of nanotwins in NiTi shape memory alloys," Journal of Applied Physics, vol. 110, no. 3, p. 033532, 2011.
    [14] Y. Zhong, K. Gall, and T. Zhu, "Atomistic characterization of pseudoelasticity and shape memory in NiTi nanopillars," Acta Materialia, vol. 60, no. 18, pp. 6301-6311, 2012.
    [15] R. Mirzaeifar, K. Gall, T. Zhu, A. Yavari, and R. DesRoches, "Structural transformations in NiTi shape memory alloy nanowires," Journal of Applied Physics, vol. 115, no. 19, p. 194307, 2014.
    [16] P. Chowdhury, G. Ren, and H. Sehitoglu, "NiTi superelasticity via atomistic simulations," Philosophical Magazine Letters, vol. 95, no. 12, pp. 574-586, 2015.
    [17] W.-S. Ko, B. Grabowski, and J. Neugebauer, "Development and application of a Ni-Ti interatomic potential with high predictive accuracy of the martensitic phase transition," Physical Review B, vol. 92, no. 13, p. 134107, 2015.
    [18] W.-S. Ko, S. B. Maisel, B. Grabowski, J. B. Jeon, and J. Neugebauer, "Atomic scale processes of phase transformations in nanocrystalline NiTi shape-memory alloys," Acta Materialia, vol. 123, pp. 90-101, 2017.
    [19] J. Irving and J. G. Kirkwood, "The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics," The Journal of chemical physics, vol. 18, no. 6, pp. 817-829, 1950.
    [20] J. E. Jones, "On the determination of molecular fields. II. From the equation of state of a gas," in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1924, vol. 106, no. 738, pp. 463-477: The Royal Society.
    [21] L. A. Girifalco and V. G. Weizer, "Application of the Morse potential function to cubic metals," Physical Review, vol. 114, no. 3, p. 687, 1959.
    [22] F. Milstein, "Theoretical strength of a perfect crystal with exponentially attractive and repulsive interatomic interactions," Journal of Applied Physics, vol. 44, no. 9, pp. 3833-3840, 1973.
    [23] F. Cleri and V. Rosato, "Tight-binding potentials for transition metals and alloys," Physical Review B, vol. 48, no. 1, p. 22, 1993.
    [24] M. Finnis and J. Sinclair, "A simple empirical N-body potential for transition metals," Philosophical Magazine A, vol. 50, no. 1, pp. 45-55, 1984.
    [25] G. S. Grest, B. Dünweg, and K. Kremer, "Vectorized link cell Fortran code for molecular dynamics simulations for a large number of particles," Computer Physics Communications, vol. 55, no. 3, pp. 269-285, 1989.
    [26] F. Reif, Fundamentals of statistical and thermal physics. Waveland Press, 2009.
    [27] C. L. Tien and J. H. Lienhard, Statistical thermodynamics. Holt, Rinehart, and Winston, 1971.
    [28] L. Verlet, "Computer" experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules," Physical review, vol. 159, no. 1, p. 98, 1967.
    [29] D. Frenkel and B. Smit, Understanding molecular simulation: from algorithms to applications. Elsevier (formerly published by Academic Press), 2002.
    [30] W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson, "A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters," The Journal of Chemical Physics, vol. 76, no. 1, pp. 637-649, 1982.
    [31] J. Haile, I. Johnston, A. J. Mallinckrodt, and S. McKay, "Molecular dynamics simulation: elementary methods," Computers in Physics, vol. 7, no. 6, pp. 625-625, 1993.
    [32] B. Quentrec and C. Brot, "New method for searching for neighbors in molecular dynamics computations," Journal of Computational Physics, vol. 13, no. 3, pp. 430-432, 1973.
    [33] T. N. Heinz and P. H. Hünenberger, "A fast pairlist‐construction algorithm for molecular simulations under periodic boundary conditions," Journal of computational chemistry, vol. 25, no. 12, pp. 1474-1486, 2004.
    [34] S.-J. Qin, J.-X. Shang, X. Wang, and F.-H. Wang, "Effects of B2/B19′ phase boundary on thermally induced phase transition in NiTi: An atomistic study," Applied Surface Science, vol. 353, pp. 1052-1060, 2015.
    [35] J. Zimmerman, C. Kelchner, P. Klein, J. Hamilton, and S. Foiles, "Surface step effects on nanoindentation," Physical Review Letters, vol. 87, no. 16, p. 165507, 2001.

    無法下載圖示 校內:2022-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE