| 研究生: |
蔡孟航 Tsai, Meng-Hang |
|---|---|
| 論文名稱: |
多層聲學超穎材料之聲音穿透分析 Sound Transmission of Multi-layered Acoustic Metamaterials |
| 指導教授: |
陳蓉珊
Chen, Jung-San |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 聲學 、超穎材料 、穿透損失 、有效質量 |
| 外文關鍵詞: | Acoustic, Metamaterial, Transmission Loss, Effective Mass |
| 相關次數: | 點閱:157 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文主要研究目的在於多層聲學超穎材料之探討,由先前學者的研究發現單層聲學超穎材料在低頻時可以有效的阻隔聲音傳遞。而週期性結構之特性為阻擋某特定頻率下聲波通過。因此,我們藉由多層聲學超穎材料結合這兩種不同的特性,並且獲得更多的頻帶和更好的隔音的效果。
本論文使用 Comsol Multiphysics 有限元素分析模擬軟體,並進行穿透損失及有效質量之探討,我們調整了中心質量的重量、薄膜的密度與作用在薄膜邊界上之張力,以及不同排列方式之薄膜和超穎材料的相互層疊對穿透損失曲線的影響,並且比對單層聲學超穎材料和多層聲學超穎材料之共振和反共振頻率。
The main purpose of this thesis is to explore the multi-layered membrane-type acoustic metamaterials. In recent years, many researchers have shown that the single-celled metamaterial can give more effective sound insulation at low frequency. The periodic structure can block certain frequencies of sound waves. Hence, we combine these two different characteristics by stacking membrane-type acoustic metamaterials in series. It can give more bandwidth and more effective sound insulation.
In this thesis, we used Comsol Multiphysics, a finite element analysis software package to explore transmission loss (TL) and effective mass. We adjusted the mass weight, membrane density, the tension force on the edges of the membrane, and the arrangement of the membranes and metamaterials, and considered their effect on the characteristics of the TL curve. The TL valley and peak frequencies of the single-celled metamaterial are compared with the stacked metamaterials.
[1]C. J. Naify, C. M. Chang, G. McKnight, and S. Nutt. (2010). “Transmission loss and dynamic response of membrane-type locally resonant acoustic metamaterials”, J. Appl. Phys. 108, 114905.
[2]C. J. Naify, C. M. Chang, G. McKnight, F. Scheulen, and S. Nutt. (2011). “Membrane-type metamaterials: Transmission loss of multi-celled arrays”, J. Appl. Phys. 109, 104902.
[3]C. J. Naify, C. M. Chang, G. McKnight, and S. Nutt. (2011). “Transmission loss of membrane-type acoustic metamaterials with coaxial ring masses”, J. Appl. Phys. 110, 124903.
[4]C. J. Naify, C. M. Chang, G. McKnight, and S. Nutt. (2012). “Scaling of membrane-type locally resonant acoustic metamaterial arrays”, J. Acoust. Soc. Am. 132, 2784-2792.
[5]Y. Zhang, J. Wen, Y. Xiao, X. Wen, and J. Wang. (2012). “Theoretical investigation of the sound attenuation of membrane-type acoustic metamaterials”, Phys. Lett. A 376, 1489-1494.
[6]Z. Yang, J. Mei, M. Yang, N. H. Chan, and P. Sheng. (2008). “Membrane-type acoustic metamaterial with negative dynamic mass”, Phys. Rev. Lett. 101, 204301.
[7]F. Langfeldt, W. Gleine, O. von Estorff. (2015). “Analytical model for low-frequency transmission loss calculation of membranes loaded with arbitrarily shaped masses”, J. Sound and Vib. 349, 315-329.
[8]S. H. Lee, C. M. Park, Y. M. Seo, Z. G. Wang, and C. K. Kim. (2009). “Acoustic metamaterial with negative density”, Phys. Lett. A373, 4464-4469.
[9]S. H. Lee, C. M. Park, Y. M. Seo, Z. G. Wang, and C. K. Kim. (2009). “Acoustic metamaterial with negative modulus”, J. Phys.: Condens. Matter. 21, 175704.
[10]S. H. Lee, C. M. Park, Y. M. Seo, Z. G. Wang, and C. K. Kim. (2010). “Composite acoustic medium with simultaneously negative density and modulus”, Phys. Rev. Lett. 104, 054301.
[11]Frank J. Fahy. (1987). “Sound and Structural vibration: Radiation, Transmission and Response”, Academic Press, London.
[12]J. S. Bolton, N. M. Shiau, Y. J. Kang. (1996). “Sound transmission through multi-panel structures lined with elastic porous materials”, J. Sound. Vib. 191, 317-347.
[13]K. Idrisi, M. E. Johnson, A. Toso, and J. P. Carneal. (2009). “Increase in transmission loss of a double panel system by addition of mass inclusion to a poro-elastic layer: A comparison between theory and experiment”, J. Sound. Vib. 323, 51-66.
[14]C. J. Naify, C. Huang, M. Sneddon, S. Nutt. (2011). “Transmission loss of honeycomb sandwich structures with attached gas layers”, Appl. Acoust. 72, 71-77.
[15]N. Hashimoto, M. Katsura, M. Yasuoka, H. Fujii. (2009). “Sound insulation of a rectangular thin membrane with additional weights” Appl. Acoust. 33, 21–43.
[16]Z. Yang, H. M. Dai, N. H. Chan, G. C. Ma, and P. Sheng. (2010). “Acoustic metamaterial panels for sound attenuation in the 50-1000 Hz regime”, Appl. Phys. Lett. 96, 041906.
[17]Y. Y. Chen, G. L. Huang, X. M. Zhoa, G. K. Hu, and C. T. Sun. (2014). “Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: Plate model”, J. Acoust. Soc. Am. 136, 2926-2934.
[18]G. Ma, M. Yang, Z. Yang, and P. Sheng. (2013). “Acoustic double negativity with coupled-membrane metamaterial”, Acoust. Soc. Am. 19, 065039.
[19]Y. Zhang, J. Wen, H. Zhao, D. Yu, L. Cai, and X. Wen. (2013). “Sound insulation property of membrane-type acoustic metamaterials carrying different masses at adjacent cells”, J. Appl. Phys. 114, 063515.
[20]H. Tian, X. Wang, Y. H. Zhou. (2014). “Theoretical model and analytical approach for a circular membrane-ring structure of locally resonant acoustic metamaterial”, Appl. Phys. A. 114, 985-990.
[21]H. H. Huang and C. T. Sun. (2009). “Wave attenuation mechanism in an acoustic metamaterial with negative mass density”, New J. Phys. 11, 013003.
[22]Comsol 5.0. (2015). Acoustics Module User’s Guide.
[23]Y. H. Chen. (2014). “Sound Transmission of Membrane-type Acoustic Metamaterials with Multiple Frame Masses”, S. M. Thesis (National Cheng Kung University).