| 研究生: |
黃冠傑 Huang, Kuan-Chieh |
|---|---|
| 論文名稱: |
2.5D堆疊式覆晶封裝結構之可靠度分析 Reliability Analysis of 2.5D Structure and Flip Chip Die Stacking Packaging |
| 指導教授: |
潘文峰
Pan, Wen-Fung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系碩士在職專班 Department of Engineering Science (on the job class) |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 2.5D IC 、矽穿孔 、覆晶封裝 、實驗設計法 、JEDEC可靠度試驗 |
| 外文關鍵詞: | 2.5D IC, Through Silicon Via, Flip Chip Packaging, DOE (Design of Experiment), JEDEC |
| 相關次數: | 點閱:113 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著電子產品蓬勃發展,電子封裝朝向多功能整合,以往的封裝技術已經無法滿足需求。為了讓有限的封裝體體積提高堆積密度達到高效能與微小化,封裝產業均積極投入研究3D IC堆疊封裝技術的發展。利用進階封裝技術來滿足高階功能晶片市場的需求。而封裝技術朝3D IC堆疊封裝技術發展中,2.5D IC堆疊封裝成為了必要的過渡產品。在2.5D IC堆疊封裝技術中,最重要是矽穿孔(Through Silicon Via, TSV )技術扮演著異質晶片整合的角色,搭配著晶圓級C2W接合技術與覆晶封裝技術,結合多功能元件得以實現。
本文採用ANSYS 15.0 分析2.5D堆疊晶片封裝體結構應力翹曲,並使用陰影疊紋法(Shadow Moiré)量測2.5D堆疊封裝體之熱變形。並利用實驗設計法(Design of Experiment)找出合適的封裝材料,再依據JEDEC規範進行可靠度實驗驗證結果,而可靠度驗證包含溫度循環測試、加速應力測試與高溫儲存測試。透過以上方法來探討封裝材料對2.5D堆疊晶片封裝體結構上翹曲與應力的影響。
In 2.5D IC stacking technology, the most important thing is that the Through Silicon Via (TSV) technology plays the role of heterogeneous wafer integration. It combines wafer-level C2W bonding technology and flip chip packaging technology to realize the integration of multi-function components. In this study, the finite element software ANSYS Workbench 15.0 is used to analyze the stress warping of 2.5D IC package. And the thermal deformation of the 2.5D IC package is measured by the Shadow Moiré method. The DOE (Design of Experiment) method is used to find the appropriate packaging materials, and the reliability test results are verified according to the JEDEC standard. The reliability verification includes MSL pre-condition, 1200 cycles TCT (-40~125℃), 100hrs HAST(130℃/85%RH), and 1000hrs HTS(150℃). Through the above methods, the influence of packaging materials on structural warpage and stress is discussed. After the DOE, used ultra-low CTE substrate can improve package level warpage. The results show that all of packages with ultra-low CTE substrate core and buffered ring adhesive material pass the electrical functional test after reliability test without any crack, delamination, etc.
[1] C. S. Selvanayagam, J. H. Lau, Z. Xiaowu, S. K. W. Seah, K. Vaidyanathan, and T. C. Chai, “Nonlinear Thermal Stress/Strain Analyses of Copper Filled TSV (Through Silicon Via) and Their Flip-Chip Microbumps” Electronic Components and Technology Conference, pp.1073-1081, 2008.
[2] N. Tanaka, T. Sato, Y. Yamaji, T. Morifuji, M. Umemoto, and K. Takahashi, “Mechanical Effects of Copper Through-Vias in a 3D Die-Stacked Module” Electronic Components and Technology Conference, pp. 473-479, 2002.
[3] N. Tanaka, Y. Yamaji, T. Sato, and K. Takahashi, “Guidelines for Structural and Material-System Design of a Highly Reliable 3D Die-Stacked Module with Copper Through-Vias” Electronic Components and Technology Conference, pp. 597-602, 2003
[4] M. Umemoto, K. Tanida, Y. Neomoto, K. Hoshino, Y. Shirai, and K. Takahashi, “High-Performance Vertical Interconnection for High-Density 3D Chip Stacking Package” Electronic Components and Technology Conference, pp.616-623, 2003
[5] K. Tanida, M. Umemoto, T. Morifuji, R. Kajiwara, T. Ando. Y. Tomita, N. Tanaka, and K. Takahashi, “Au Bump Interconnection in 20 μm Pitch on 3D Chip Stacking Technology” Japanese Journal of Applied Physics, vol. 42, No.10, pp. 6390-6395, 2003.
[6] T. Y. Kuo, S.M. Chang, Y. C. Shih, C. W. Chiang, C. K. Hsu, C. K. Lee, C. T. Lin, Y. H. Chen, and W. C. Lo, “ Reliability Tests for a Three Dimensional Chip Stacking Structure with Through Silicon Via Connections and Low Cost” Electronic Components and Technology Conference, pp. 853-858, 2008.
[7] M. C. Hsieh and C. K. Yu, “Thermo-Mechanical Simulations for 4-Layer Stacked IC Packages” 9th Int. Conf on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, EuroSimE 2008, pp. 1-7, 2008.
[8] M. C. Hsieh, C. K. Yu, and W. Lee, “Effects of Geometry and Material Properties for Stacked IC Package with Spacer Structure” 10th Int. Conf on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, EuroSimE 2009, 2009.
[9] http://www.reuters.com/article/az-amkor-technology-idUSnBw166197a+100+BSW20141216
[10] STATS ChipPAC, Technique report: Flip chip with Cu Column, BOL and Enhanced Processes, 2015.
[11] W. W. Shen, ISPD Lecture: 3DIC System Design Impact, Challenge and Solutions, 2013.
[12] K. Joosse, TSMC technique developing report: Advanced Heterogeneous Solutions for System Integration, 2015.
[13] http://www.amd.com/zh-tw/products/graphics/desktop/R9
[14] Advanced Micro Devices, Inc., Open information: HBM blasts through existing performance limitations, 2015.
[15] R. Webb, Internaltional magazine: Temporary Bonding for 3D Integration Temporary bonding enables new processes requiring ultra-thin wafers, SOLID STATE TECHNOLOGY, 2010.
[16] P. Garrou, M. Koyanagi and P. Ramm, Handbook of 3D Integration: 3D Process Technology, WILEY, 2014.
[17] Release 15.0 Documentation for ANSYS.
[18] http://www.istgroup.com/chinese/3_service/03_01_detail.php?MID=2&ID=152
[19] Solid State Technology Association, JESD22-A113D: Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing, 2003.
[20] Solid State Technology Association, J-STD-020D: Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices, 2008.
[21] Solid State Technology Association, JESD22-A104: Temperature Cycling, 2009.
[22] IPC -Association Connecting Electronics Industries, IPC -9701: Performance Test Methods and Qualification Requirements for Surface Mount Solder Attachments, 2002.
[23] Solid State Technology Association, JESD22-A118: Accelerated Moisture Resistance -Unbiased HAST, 2000.
[24] Solid State Technology Association, JESD22-A103: High Temperature Storage Life, 2001.
校內:2023-08-01公開