簡易檢索 / 詳目顯示

研究生: 楊志鴻
Yang, Chih-Hung
論文名稱: 金屬擴張網應用於建築立面之採光與耗能評估-以台南地區辦公建築為例
Evaluation of Expanded Metal Mesh Applied on Building Facades Regarding Daylight and Energy Consumption: A Case Study of an Office Building in Tainan.
指導教授: 蔡耀賢
Tsay, Yaw- Shyan
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 建築學系
Department of Architecture
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 77
中文關鍵詞: DIVAEnergyPlus光環境品質
外文關鍵詞: DIVA, EnergyPlus, Lighting Environment Quality
相關次數: 點閱:61下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,愈來愈多建築採用金屬擴張網作為立面的設計元素,除了具備造型上的美感同時也提供遮陽效果。並且已有熱帶、亞熱帶地區國家在建築節能規範中評估其節能效益,如臺灣、新加坡。然而,國內文獻指出由於金屬擴張網的三維開孔型式使其實際透過率較水平開口率所定義之遮陽效果佳。另一方面,阻擋日射的同時造成光環境品質降低,因此有國外文獻指出特定開口率的沖孔遮陽板能同時兼顧兩者。
    本研究目的為評估金屬擴張網對建築空調與照明耗能以及自然採光的影響。研究分為軟體驗證與採光與耗能評估兩部份。軟體驗證部分,目的為驗證本研究使用之模擬軟體EnergyPlus與Radiance具有模擬再現性及適用範圍,於實驗屋分別進行室內溫度及照度實測,並與模擬數值比對。第二階段以辦公大樓為例,評估3種窗牆比、3種玻璃類型及3種不同開口率之金屬擴張網,分別裝設於東、西向建築開口部時,其對於採光與建築耗能的綜合評估。軟體驗證結果顯示,EnergyPlus模擬的誤差來自金屬擴張網的三維構造無法完全由模擬再現(R2=0.76),不過整體而言EnergyPlus的熱環境模擬仍具一定再現性(R2= 0.89)。DIVA光環境驗證結果顯示,針對實際照度低於1000 lx的環境下,實測值與模擬值呈顯著正相關(R2=0.87)。因此確認DIVA在此範圍的模擬具有再現性與準確度。
    建築耗能與採光評估部分,結果顯示當窗牆比和玻璃日射取得率較高時,金屬擴張網具有較佳的節能比率。此外,窗牆比為50%或80%時,金屬擴張網顯著改善外周區過大照度有效減少眩光產生。然而,在窗牆比30%時,室內採光已嚴重不足因此不建議再安裝金屬擴張網與低可見光透過率之玻璃。在本研究36組模擬中,最佳方案解為窗牆比50%、採用膠合清玻璃與21%開口率的金屬擴張網。

    Expanded metal mesh has become widely used as a shading element in the façade of many buildings in recent years, and its energy saving performance has been evaluated in the building codes of such tropical/subtropical countries as Singapore and Taiwan. However, expanded metal mesh reduces solar radiation while also reducing the natural daylight entering the building. This study’s objective is to assess the impact of expanded metal mesh on building energy consumption and natural daylighting.
    This study is divided into two phases. The first phase verifies the accuracy and scope of application of EnergyPlus and DIVA software by field measurement. Results show that the thermal environment simulation of EnergyPlus is quite accurate, but some errors are caused by the three-dimension structure of the expanded metal mesh. And about DIVA, it has an accurate illuminance prediction ability when the actual illuminance is below 1000 lx.
    The second phase takes the office building as an example, and evaluates the effects of different window to wall ratios(WWR), expanded metal mesh with different perforation rate, and different glazing type on building energy consumption and natural daylighting. Results show that the expanded metal mesh has a better energy saving ratio when the WWR and the glazing SHGC value are higher. On the other hand, when the WWR is 50% or 80%, the expanded metal mesh effectively improves the lighting environment. In 36 scenarios, when the WWR is 50%, the laminated clear glass and expanded metal mesh with 21% perforation rate is separately used, it conforms with the LEED daylight standard and has the lowest energy consumption.

    摘要 I 目錄 XV 圖目錄 XVIII 表目錄 XIX 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 研究流程圖 3 1.4 研究範圍 4 第二章 文獻回顧與相關理論 5 2.1 建築耗能相關研究 5 2.2 金屬擴張網立面遮陽效果 6 2.3 室內光環境 8 2.3.1自然採光之益處 8 2.4 照明與空調耗能 9 第三章 研究方法 11 3.1 辦公大樓採光與耗能模擬 12 3.1.1 模擬案例選擇 12 3.1.2 模擬變因確立 14 3.1.3 採光模擬軟體應用 15 3.1.4 耗能模擬軟體應用 18 3.2 實際測量 20 3.2.1 室內溫度量測 21 3.2.2 室內採光量測 23 3.3 TMY3標準氣象年說明 24 3.4 評估指標說明 25 3.4.1 LEED自然採光評估 25 3.4.2 CNS室內工作場所照明標準 26 3.4.3 熱環境評估指標 27 第四章 模擬軟體驗證 29 4.1 EnergyPlus軟體驗證 29 4.1.1 實測外界條件確認 29 4.1.2 模擬邊界條件設定 30 4.1.3 實測與模擬比對結果 32 4.2 DIAlux、DIVA軟體驗證與選擇 34 4.2.1 實測設置 34 4.2.2 模擬邊界條件設定 35 4.2.3 DIALux實測與模擬比對結果 36 4.2.4 DIVA實測與模擬比對結果 37 4.3 DIVA軟體驗證 38 4.3.1 實測設置 38 4.3.2 模擬邊界條件設定 39 4.3.3 DIVA實測與模擬比對結果 40 4.4 模擬軟體驗證小結 49 第五章 採光與耗能模擬結果 51 5.1 模擬建立與空間設定 51 5.2 DIVA採光模擬設定 53 5.2.1 模擬條件設定 53 5.2.2 材質設定 54 5.3 DIVA耗能模擬設定 55 5.3.1 耗能模擬條件設定 55 5.3.2 建材設定 56 5.4 採光與耗能結果討論. 58 5.4.1. 採光評估分析 58 5.4.2. 耗能評估分析 68 5.4.3. 小結 70 第六章 結論與建議 73 6.1 研究結論 73 6.1.1. 軟體驗證結論 73 6.1.2. 採光與耗能研究成果 73 6.2 後續研究建議 74 參考文獻 75

    1.內政部建築研究所(2012),綠建築評估手冊 – 基本型。
    2.內政部建築研究所(2013),臺灣建築能源模擬解析用逐時標準氣象資料 TMY3之建置與研究。
    3.內政部營建署(2011d),辦公廳類建築物節約能源設計技術規範。
    4.CNS 12112中華民國國家標準(1987)。CNS 12112:室內工作場所照明。台北市:經濟部標準檢驗局。
    5.林憲德(2009),人居熱環境,詹氏書局。
    6.臺灣綠色生產力基金會(2016),非生產性質行業能源查核年報。
    7.林建勳(2017)金屬擴張網應用於陽台綠化系統之開發,成功大學碩士論文。。
    8.詹國燕(2015),建築耗能最佳化策略模擬研究一以美國、臺灣與印度尼西亞的商業辦公空間為例,台灣科技大學碩士論文。
    9.黃育徵(2017),循環經濟,天下雜誌出版社。
    10.大和田淳、加藤止宏,2012,エキスパンドメタルの日射遮蔽性能の測定,空気調和・衛生工学会人会学術講演論文集2012.9.5 − 7(札幌)。
    11.菊池卓郎、樋口洋明、井川憲男,2009,採光が省エネルギー效果と室內環境に与える影響に関する計算検討,日本建築學會環境系論文集第74卷第636號,133-139。
    12.野口公喜,井上学,阪口敏彦,2001,日中における高照度光照射の覚醒作用,平成13年度照明學會第34回全國大會
    13.彰国社,1969,建築学体系 22 室内環境計画,材料反射率。
    14.Alghoul, S.K., Rijabo, H.G., Mashena, M.E. (2017). Energy consumption in buildings: A correlation for the influence of window to wall ratio and window orientation in Tripoli, Libya. Building Engineering, 11, 82-86.
    15.Bellia, L, Falco, F.D., Minichiello,.F. (2013) Effects of solar shading devices on energy requirements of standalone office buildings for Italian climates. Applied Thermal Engineering, 54, 190-210.
    16.Chi, D.A., Moreno, D., Navarro, J. (2017). Design optimisation of perforated solar façades in order to balance daylighting with thermal performance. Building and Environment, 125, 383-400.
    17.DIAL GmbH (2011). DIALux version 4.9 user manual. In Lüdenscheid, Germany: DIAL GmbH publishing, 159-160.
    18.Deru, M., Field, K., Studer, D., Benne, K., Griffith, B., Torcellini, P., Liu, B., Halverson, M., Winiarski, D., Rosenberg, M., Yazdanian, M., Huang, J., Crawley, D.(2011). U.S. Department of Energy Commercial Reference Building Models of the National Building Stock. Technical Report of National Renewable Energy Laboratory (NREL).
    19.Franta, G. and Anstead, K. (1994). Daylighting Offers Great Opportunities. Window & Door Specifier-Design Lab, Spring, 40-43.
    20.ISO 7726 (1998). Ergonomics of the thermal environment -- Instruments for measuring physical quantities. International Organization for Standardization: Geneva.
    21.Lau, A.K.K., Salleh, E, Lim, C.H., Sulaiman, M.Y. (2016). Potential of shading devices and glazing configurations on cooling energy savings for high-rise office buildings in hot-humid climates: The case of Malaysia. International Journal of Sustainable Built Environment, 5, 387-399.
    22.Luo, C. (1998). To Capture the Sun and Sky. Lighting Futures, 1, 4.
    23.LEED. (2018). LEED BD+C: Healthcare, Daylight. USA: Retrieved June 11, 2018 from https://www.usgbc.org/credits/healthcare/v4-draft/eqc-0.
    24.Mainini, A.G., Poli, T, Zinzi, M, Speroni, A. (2013). Spectral light transmission measure of metal screens for glass façades and assessment of their shading potential, Energy Procedia, 48, 1292-1301.
    25.Mainini, A.G., Poli, T, Zinzi, M, Speroni, A. (2015). Metal mesh as shading devices and thermal response of an office building: parametric analysis, Energy Procedia, 78, 103-109.
    26.Reinhart, C.F., Mardaljevic, J., Rogers, Z. (2006). Dynamic Daylight Performance Metrics for
    Sustainable Building Design. LEUKOS, 3(1), 7-31.
    27.Reinhart, C.F. (2006). Tutorial on the Use of Daysim Simulations for Sustainable Design. Ottawa, Canada: Institute for Research in Construction National Research Council Canada.
    28.RADSITE. (2018). Detailed Description. Berkeley, California, USA: Retrieved June 11, 2018 form https://www.radiance-online.org.
    29.SOLEMMA LLC. (2018). Company history. Cambridge MA, USA: Retrieved June 11, 2018 from https://www.solemma.com/About.html.
    30.EnergyPlus Documentation (2016). Getting Started with EnergyPlus Basic Concepts Manual – Essential Information You Need about Running EnergyPlus. USA: University of Illinois, Lawrence Berkeley National Laboratory (LBNL).
    31.Yun, G., Yoon, K.C., Kim, K.S. (2014). The influence of shading control strategies on the visual comfort and energy demand of office buildings. Energy and Buildings, 84, 70–85.

    下載圖示 校內:2020-01-01公開
    校外:2020-01-01公開
    QR CODE