簡易檢索 / 詳目顯示

研究生: 陳士恆
Chen, Shih-Heng
論文名稱: 單純疱疹病毒在腦部感染和復發之研究與抗藥性病毒復發之調控
Study of Herpes Simplex Virus Infection and Reactivation in Mouse Brain and the Reactivation Regulation of Drug-resistant Virus
指導教授: 陳舜華
Chen, Shun-Hua
學位類別: 博士
Doctor
系所名稱: 醫學院 - 基礎醫學研究所
Institute of Basic Medical Sciences
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 105
中文關鍵詞: 復發內源性細胞因子單純疱疹病毒抗藥性病毒
外文關鍵詞: drug-resistant virus, reactivation, Egr-1, HSV
相關次數: 點閱:92下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 單純疱疹病毒(Herpes simplex virus, HSV)引起的腦炎是偶發性致死性腦炎中最常見的一種。目前大部分研究控制疱疹病毒腦炎的因子多著重在一些免疫因子或是轉殖基因到老鼠身上研究該基因對控制疱疹病毒腦炎重要性的相關研究。因此,很少有研究指出控制疱疹病毒腦炎相關的內源性細胞因子。在本論文中,我們利用microarray的方式找到一個基因— early growth response 1 (Egr-1),在神經細胞被疱疹病毒感染的情況下被大量誘發表現。進一步的研究發現,Egr-1的表現可以促進疱疹病毒在神經細胞中的複製,使宿主的死亡率增加。而且,Egr-1可能是藉由調控病毒基因啟動子的活性來促進病毒的複製。因此,在控制及預防致死性疱疹病毒感染方面,Egr-1可能可以用來當作治療的標的。
    在病毒感染急性期過後,疱疹病毒會在週邊及中樞神經系統建立潛伏感染,經過適當的刺激病毒會從神經組織中復發。目前病毒在週邊神經結復發的機制已被廣泛的研究,然而病毒在腦部復發的研究卻仍有限。因為以最敏感的ex vitro實驗方法鮮少能觀察到病毒從中樞神經組織中復發的現象。因此,本論文中我們將實驗的方法進行修改後,發現高達88%的腦幹組織培養中可以觀察到有病毒復發的現象,其他腦區亦有程度不等的病毒復發現象。實驗中也發現,病毒復發程度的多寡和病毒在急性期複製數量以及潛伏期時病毒基因組在神經組織中的數量有關。相較於先前的實驗方法,我們所使用的方法能增進神經細胞的存活率。因此,在我們的系統中能看到病毒在中樞神經組織復發的現象。此外,我們也發現到這種現象並非限定在單一病毒或老鼠的品系,甚至第二型疱疹病毒也能觀察到相同的結果。此一發現不但釐清長期以來中樞神經組織是否為HSV潛伏感染組織的爭議,並且所建立的研究模式將可用來探討病毒在中樞神經復發和一些神經性疾病的相關性。
    臨床上常發現到疱疹病毒的感染或復發對免疫系統有缺陷的病人,常會造成重大的傷害。針對疱疹病毒的治療方面,目前已有有效抑制病毒複製的抗病毒藥物像是: Acyclovir,Gancyclovir。不過當抗藥性的病毒株出現時,往往在治療上面臨嚴重的問題。常見的抗藥性病毒株大部分都是在thymidine kinase (TK)基因上發生變異。在先前動物模式上的研究指出,TK基因突變的病毒無法在神經細胞複製或是從潛伏狀態復發,不過同時感染野生型和突變的病毒株時,可以從復發的樣本中分離出突變的病毒。臨床上常從病人復發的檢體中同時偵測到野生型和突變的病毒。因此在本論文中我們想要探討究竟是何種機制能使得TK基因突變的病毒復發。實驗結果發現是透過野生型的病毒株提供TK 酵素的補償作用使得突變的病毒復發。並且發現對於病毒在急性期、潛伏期的建立與病毒復發時,突變病毒株所需的TK活性各有不同。

    Herpes simplex virus (HSV) induced encephalitis during acute infection is the most common sporadic and life-threatening encephalitis. Current studies investigating the factors which regulate herpetic encephalitis focus on immune factors or the expression of a transgene in mice. There are very few studies investigating endogenous factors which regulate herpetic encephalitis. Therefore, we performed a microarray analysis to determine the alteration of host genes in human neuronal cells during HSV-1 infection. Early growth response 1 (Egr-1), a transcription factor, is found to be up-regulated in HSV-1-infected neuronal cells. Our results show that Egr-1 functions to enhance HSV-1 replication in neuronal cells and consequently increases the mortality rate of infected mice. These results indicate a crucial role of Egr-1 in regulating HSV-1 infection.
    Following acute infection, HSV establishes latency in the neurons of both peripheral sensory ganglia and central nervous system (CNS) of latently infected hosts. However, several ex vivo studies have documented that latent HSV reactivates rarely from the CNS of mice when assayed by mincing tissues before explant culture, despite the presence of viral genomes in brain tissues. Therefore, in this study, we modified the reactivation protocol originally used for trigeminal ganglia and observed as high as 88% of viral reactivation from brain stems of latently infected mice. The high reactivation frequency of brain stem correlated with higher levels of acute viral replication and latent viral genomes, and the dissociation method greatly enhanced the cell viability and viral infectivity of brain stem cultures when compared to the conventional mincing method. Lastly, the efficient reactivation of HSV from mouse CNS was observed in more than one viral strain, viral serotype, or mouse strain, further indicating that the CNS can be an authentic latency site for HSV. This model also can serve as a good tool to investigate the potential of HSV to cause recurrent diseases in the CNS.
    Acyclovir (ACV) is the most common drug in clinical treatment of HSV infection; however, the emergence of ACV-resistant viruses can hinder therapy and pose a significant problem, particularly, in immunocompromised patients. Many drug-resistant mutants have been reported as thymidine kinase (TK) mutants. Laboratory strains of HSV lacking TK cannot replicate to detectable levels acutely in mouse trigeminal ganglia and do not reactivate from latency. However, many pathogenic clinical isolates that are resistant to the antiviral drug ACV are heterogeneous populations of TK-negative (TK-) and TK-positive (TK+) viruses. In this study, we investigated the reactivation mechanism of TK- HSV. The results showed that TK+ virus permits TK- virus reactivation through enzymatic complementation of TK. The requirement for the amount of TK during acute replication, latency establishment, and reactivation is different.

    Contents ……………………………………………………1 Abstract in Chinese …………………………………….5 Abstract ……………………………………………………7 Acknowledgements.................................9 Abbreviations………………………………………………11 Table list ……………………………………………...12 Figure list ………………………………………………13 Introduction HSV-1 structure and replication ……………………14 Disease manifestations of HSV-1 infection ………14 HSV-1 encephalitis and host factors ………………16 HSV-1 brain reactivation and neural diseases …17 Treatment of HSV-1 infection ………………………20 Drug resistance …………………………………………20 Specific aims ……………………………………………22 Materials and methods Cells and viruses ………………………………………24 Infection of mice and tissue collection …………24 Plaque autoradiography ………………………………25 Quantitative PCR ………………………………………26 Southern blot analysis ………………………………27 Co-localization of TK+ and TK- viruses in mouse ganglionic cells …..27 Assay of thymidine kinase activity ………………28 Reactivation of HSV-1 from latently infected mouse brains …………28 Viability of cells in neural tissue preparations ..29 Damage of Vero and SK-N-SH cell monolayers by neural tissue preparations ………………………………………30 Quantitative real-time PCR ………………………………30 RT-PCR analysis ……………………………………………30 Western blot analysis ……………………………………31 Generation of promoter reporter constructs ………31 Egr-1 promoter reporter analysis ……………………32 Stable transfection ……………………………………32 Constructions of viral promoter reporter plasmids…………………..32 Analysis of viral promoter activity …………………33 Chromatin immunoprecipitation (ChIP) assay ………34 Antisense repression ……………………………………35 Statistical analysis ……………………………………36 Results (1) To identify the endogenous host factors which regulate HSV infection in neural tissues …………37 (2) To study HSV reactivation from latently infected mouse brains .....41 (3) To study the reactivation mechanism of thymidine kinase-negative HSV-1 …………………………………46 Discussion …………………………………………………53 Conclusion …………………………………………………63 References …………………………………………………65 Tables ………………………………………………………83 Figures ……………………………………………………90 Author’s curriculum vitae……………………………103

    1.Beffert, U., Bertrand, P., Champagne, D., Gauthier, S. & Poirier, J. (1998). HSV-1 in brain and risk of Alzheimer's disease. Lancet 351, 1330-1.
    2.Bergstrom, T. (2006). Pathogenesis. In Herpes simplex viruses, 1st edn, pp. 99-117. Edited by P. C. Studahl M, Bergstrom T. New York: Taylor & Francis Group.
    3.Bettini, M., Xi, H., Milbrandt, J. & Kersh, G. J. (2002). Thymocyte development in early growth response gene 1-deficient mice. J. Immunol. 169, 1713-20.
    4.Binstock, T. (2001). Anterior insular cortex: linking intestinal pathology and brain function in autism-spectrum subgroups. Med. Hypotheses 57, 714-7.
    5.Bozon, B., Davis, S. & Laroche, S. (2002). Regulated transcription of the immediate-early gene Zif268: mechanisms and gene dosage-dependent function in synaptic plasticity and memory formation. Hippocampus 12, 570-7.
    6.Cabrera, C. V., Wohlenberg, C., Openshaw, H., Rey-Mendez, M., Puga, A. & Notkins, A. L. (1980). Herpes simplex virus DNA sequences in the CNS of latently infected mice. Nature 288, 288-90.
    7.Cantin, E., Tanamachi, B. & Openshaw, H. (1999). Role for gamma interferon incontrol of herpes simplex virus type 1 reactivation. J. Virol. 73, 3418-23.
    8.Chang, Y., Lee, H. H., Chen, Y. T., Lu, J., Wu, S. Y., Chen, C. W., Takada, K. & Tsai, C. H. (2006). Induction of the early growth response 1 gene by Epstein-Barr virus lytic transactivator Zta. J. Virol. 80, 7748-55.
    9.Chauhan, D., Kharbanda, S. M., Uchiyama, H., Sukhatme, V. P., Kufe, D. W. & Anderson, K. C. (1994). Involvement of serum response element in okadaic acid-induced EGR-1 transcription in human T-cells. Cancer Res. 54, 2234-9.
    10.Chen, S.-H., Cook, C. J., Grove, K. L. & Coen, D. M. (1998). Human thymidine kinase can functionally replace herpes simplex virus type 1 thymidine kinase for viral replication and in mouse sensory ganglia and reactivaion from latency upon explant. J. Virol. 72, 6710-5.
    11.Chen, S.-H., Pearson, A., Coen, D. M. & Chen, S.-H. (2004). Failure of thymidine kinase-negative herpes simplex virus to reactivation from latency following efficient establishment. J. Virol. 78, 520-3.
    12.Chen, S. H., Yao, H. W., Huang, W. Y., Hsu, K. S., Lei, H. Y., Shiau, A. L. & Chen, S. H. (2006). Efficient reactivation of latent herpes simplex virus from mouse central nervous system tissues. J. Virol. 80, 12387-92.
    13.Christy, B. & Nathans, D. (1989). DNA binding site of the growth factor-inducible protein Zif268. Proc. Natl. Acad. Sci. U S A 86, 8737-41.
    14.Coen, D. M., Kosz-Vnenchak, M., Jacobson, J. G., Leib, D. A., Bogard, C. L., Schaffer, P. A., Tyler, K. L. & Knipe, D. M. (1989). Thymidine kinase-negative herpes simplex virus mutants establish latency in mouse trigeminal ganglia but do not reactivate. Proc. Natl. Acad. Sci. USA 86, 4736-40.
    15.Coen, D. M. & Schaffer, P. A. (2003). Antiherpesvirus drugs: a promising spectrum of new drugs and drug targets. Nat. Rev. Drug Discov. 2, 278-88.
    16.Cook, M. L. & Stevens, J. G. (1976). Latent herpetic infections following experimental viraemia. J. Gen. Virol. 31, 75-80.
    17.Dai-Ju, J. Q., Li, L., Johnson, L. A. & Sandri-Goldin, R. M. (2006). ICP27 interacts with the C-terminal domain of RNA polymerase II and facilitates its recruitment to herpes simplex virus 1 transcription sites, where it undergoes proteasomal degradation during infection. J. Virol. 80, 3567-81.
    18.Davar, G., Kramer, M. F., Garber, D., Roca, A. L., Andersen, J. K., Bebrin, W., Coen, D. M., Kosz-Vnenchak, M., Knipe, D. M., Breakefield, X. O. & Isacson, O. (1994). Comparative efficacy of expression of genes delivered to mouse sensory neurons with herpes virus vectors. J. Comp. Neurol. 339, 3-11.
    19.Deatly, A. M., Spivack, J. G., Lavi, E., O'Boyle, D. R., 2nd & Fraser, N. W. (1988). Latent herpes simplex virus type 1 transcripts in peripheral and central nervous system tissues of mice map to similar regions of the viral genome. J. Virol. 62, 749-56.
    20.Di Stefano, G., Casoli, T., Fattoretti, P., Gracciotti, N., Solazzi, M. & Bertoni-Freddari, C. (2001). Distribution of map2 in hippocampus and cerebellum of young and old rats by quantitative immunohistochemistry. J. Histochem. Cytochem. 49, 1065-6.
    21.Ebert, S. N. & Wong, D. L. (1995). Differential activation of the rat phenylethanolamine N-methyltransferase gene by Sp1 and Egr-1. J. Biol. Chem. 270, 17299-305.
    22.Efstathiou, S., Kemp, S., Darby, G. & Minson, A. C. (1989). The role of herpes simplex virus type 1 thymidine kinase in pathogenesis. J. Gen. Virol. 70, 869-79.
    23.Efstathiou, S., Minson, A. C., Field, H. J., Anderson, J. R. & Wildy, P. (1986). Detection of herpes simplex virus-specific DNA sequences in latently infected mice and in humans. J. Virol. 57, 446-55.
    24.Ellis, M. N., Waters, R., Hill, E. L., Lobe, D. C., Selleseth, D. W. & Barry, D. W. (1989). Orofacial infection of athymic mice with defined mixtures of acyclovir-susceptible and acyclovir-resistant herpes simplex virus type 1. Antimicrob. Agents Chemother. 33, 304-10.
    25.Evans, J. S., Lock, K. P., Levine, B. A., Champness, J. N., Sanderson, M. R., Summers, W. C., McLeish, P. J. & Buchan, A. (1998). Herpesviral thymidine kinases: laxity and resistance by design. J. Gen. Virol. 79 ( Pt 9), 2083-92.
    26.Fahmy, R. G., Dass, C. R., Sun, L. Q., Chesterman, C. N. & Khachigian, L. M. (2003). Transcription factor Egr-1 supports FGF-dependent angiogenesis during neovascularization and tumor growth. Nat. Med. 9, 1026-32.
    27.Field, H. J. (1982). Development of clinical resistance to acyclovir in herpes simplex virus-infected mice receiving oral therapy. Antimicrob. Agents Chemother. 21, 744-52.
    28.Field, H. J. & Lay, E. (1984). Characterization of latent infections in mice inoculated with herpes simplex virus which is clinically resistant to acyclovir. Antiviral Res. 4, 43-52.
    29.Fraser, N. W., Lawrence, W. C., Wroblewska, Z., Gilden, D. H. & Koprowski, H. (1981). Herpes simplex type 1 DNA in human brain tissue. Proc. Natl. Acad. Sci. U S A. 78, 6461-5.
    30.Fu, Z. F., Weihe, E., Zheng, Y. M., Schafer, M. K., Sheng, H., Corisdeo, S., Rauscher, F. J., 3rd, Koprowski, H. & Dietzschold, B. (1993). Differential effects of rabies and borna disease viruses on immediate-early- and late-response gene expression in brain tissues. J. Virol. 67, 6674-81.
    31.Fyfe, J. A., Keller, P. M., Furman, P. A., Miller, R. L. & Elion, G. B. (1978). Thymidine kinase from herpes simplex virus phosphorylates the new antiviral compound, 9-(2-hydroxyethoxymethyl)guanine. J. Biol. Chem. 253, 8721-7.
    32.Gannicliffe, A., Saldanha, J. A., Itzhaki, R. F. & Sutton, R. N. (1985). Herpes simplex viral DNA in temporal lobe epilepsy. Lancet 1, 214-5.
    33.Gashler, A. & Sukhatme, V. P. (1995). Early growth response protein 1 (Egr-1): prototype of a zinc-finger family of transcription factors. Prog. Nucleic Acid Res. Mol. Biol. 50, 191-224.
    34.Gelman, I. H. & Silverstein, S. (1987). Herpes simplex virus immediate-early promoters are responsive to virus and cell trans-acting factors. J. Virol. 61, 2286-96.
    35.Goodpasture, E. W. (1929). Herpetic infection, with especial reference to involvement of the nervous system. Medicine (Baltimore) 8, 233-43.
    36.Griffiths, A., Chen, S.-H., Horsburgh, B. C. & Coen, D. M. (2003). Translational compensation of a frameshift mutation affecting herpes simplex virus thymidine kinase is sufficient to permit reactivation from latency. J. Virol. 77, 4703-9.
    37.Griffiths, A., Renfrey, S. & Minson, T. (1998). Glycoprotein C-deficient mutants of two strains of herpes simplex virus type 1 exhibit unaltered adsorption characteristics on polarized or non-polarized cells. J. Gen. Virol. 79 ( Pt 4), 807-12.
    38.Hemling, N., Roytta, M., Rinne, J., Pollanen, P., Broberg, E., Tapio, V., Vahlberg, T. & Hukkanen, V. (2003). Herpesviruses in brains in Alzheimer's and Parkinson's diseases. Ann. Neurol. 54, 267-71.
    39.Herdegen, T. & Leah, J. D. (1998). Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins. Brain Res. Brain Res. Rev. 28, 370-490.
    40.Horsburgh, B. C., Chen, S.-H., Hu, A., Mulamba, G. B., Burns, W. H. & Coen, D. M. (1998). Recurrent acyclovir-resistant herpes simplex virus in an immunocompromised patient: can strain differences compensate for loss of thymidine kinase in pathogenesis? J. Infect. Dis. 178, 618-625.
    41.Horsburgh, B. C., Kollmus, H., Hauser, H. & Coen, D. M. (1996). Translational recoding induced by G-rich mRNA sequences that form unusual structures. Cell 86, 949-59.
    42.Hosono, S., Gross, I., English, M. A., Hajra, K. M., Fearon, E. R. & Licht, J. D. (2000). E-cadherin is a WT1 target gene. J. Biol. Chem. 275, 10943-53.
    43.Huang, C. J. & Wagner, E. K. (1994). The herpes simplex virus type 1 major capsid protein (VP5-UL19) promoter contains two cis-acting elements influencing late expression. J. Virol. 68, 5738-47.
    44.Itzhaki, R. F., Lin, W. R., Shang, D., Wilcock, G. K., Faragher, B. & Jamieson, G. A. (1997). Herpes simplex virus type 1 in brain and risk of Alzheimer's disease. Lancet 349, 241-4.
    45.Jacobson, J. G., Chen, S.-H., Cook, W. J., Kramer, M. F. & Coen, D. M. (1998). Importance of the herpes simplex virus UL24 gene for productive ganglionic infection in mice. Virology 242, 161-9.
    46.Jones, C., Inman, M., Peng, W., Henderson, G., Doster, A., Perng, G. C. & Angeletti, A. K. (2005). The herpes simplex virus type 1 locus that encodes the latency-associated transcript enhances the frequency of encephalitis in male BALB/c mice. J. Virol. 79, 14465-9.
    47.Kastrukoff, L., Long, C., Doherty, P. C., Wroblewska, Z. & Koprowski, H. (1981). Isolation of virus from brain after immunosuppression of mice with latent herpes simplex. Nature 291, 432-3.
    48.Kleyman, G. (2006). Antiviral treatment. In Herpes simplex viruses, 1st edn, pp. 153-176. Edited by P. C. Studahl M, Bergstrom T. New York: Taylor & Francis Group.
    49.Knipe, D. M. (1989). The role of viral and cellular nuclear proteins in herpes simplex virus replication. Adv. Virus Res. 37, 85-123.
    50.Knotts, F. B., Cook, M. L. & Stevens, J. G. (1973). Latent herpes simplex virus in the central nervous system of rabbits and mice. J. Exp. Med. 138, 740-4.
    51.Knotts, F. B., Cook, M. L. & Stevens, J. G. (1974). Pathogenesis of herpetic encephalitis in mice after ophthalmic inoculation. J. Infect. Dis. 130, 16-27.
    52.Kramer, M. F. & Coen, D. M. (1995). Quantification of transcripts from the ICP4 and thymidine kinase genes in mouse ganglia latently infected with herpes simplex virus. J. Virol. 69, 1389-1399.
    53.Kumaraguru, U., Davis, I. A., Deshpande, S., Tevethia, S. S. & Rouse, B. T. (2001). Lymphotoxin alpha-/- mice develop functionally impaired CD8+ T cell responses and fail to contain virus infection of the central nervous system. J. Immunol. 166, 1066-74.
    54.Kurt-Jones, E. A., Chan, M., Zhou, S., Wang, J., Reed, G., Bronson, R., Arnold, M. M., Knipe, D. M. & Finberg, R. W. (2004). Herpes simplex virus 1 interaction with Toll-like receptor 2 contributes to lethal encephalitis. Proc. Natl. Acad. Sci. U S A 101, 1315-20.
    55.Latronico, N. & Candiani, A. (1987). Brainstem herpes virus encephalitis. Lancet 2, 690-1.
    56.Lau, L. F. & Nathans, D. (1987). Expression of a set of growth-related immediate early genes in BALB/c 3T3 cells: coordinate regulation with c-fos or c-myc. Proc. Natl. Acad. Sci. U S A 84, 1182-6.
    57.Lausch, R. N., Oakes, J. E., Metcalf, J. F., Scimeca, J. M., Smith, L. A. & Robertson, S. M. (1989). Quantitation of purified monoclonal antibody needed to prevent HSV-1 induced stromal keratitis in mice. Curr. Eye Res. 8, 499-506.
    58.LeBlanc, R. A., Pesnicak, L., Cabral, E. S., Godleski, M. & Straus, S. E. (1999). Lack of interleukin-6 (IL-6) enhances susceptibility to infection but does not alter latency or reactivation of herpes simplex virus type 1 in IL-6 knockout mice. J. Virol. 73, 8145-51.
    59.Lee, S. L., Sadovsky, Y., Swirnoff, A. H., Polish, J. A., Goda, P., Gavrilina, G. & Milbrandt, J. (1996). Luteinizing hormone deficiency and female infertility in mice lacking the transcription factor NGFI-A (Egr-1). Science 273, 1219-21.
    60.Lee, S. L., Tourtellotte, L. C., Wesselschmidt, R. L. & Milbrandt, J. (1995). Growth and differentiation proceeds normally in cells deficient in the immediate early gene NGFI-A. J. Biol. Chem. 270, 9971-7.
    61.Leib, D. A., Bogard, C. L., Kosz-Vnenchak, M., Hicks, K. A., Coen, D. M., Knipe, D. M. & Schaffer, P. A. (1989). A deletion mutant of the latency-associated transcript of herpes simplex virus type 1 reactivates from the latent state with reduced frequency. J. Virol. 63, 2893-900.
    62.Leib, D. A., Nadeau, K. C., Rundle, S. A. & Schaffer, P. A. (1991). The promoter of the latency-associated transcripts of herpes simplex virus type 1 contains a functional cAMP-response element: role of the latency-associated transcripts and cAMP in reactivation of viral latency. Proc. Natl. Acad. Sci. U S A 88, 48-52.
    63.Li, H., Zhang, J., Kumar, A., Zheng, M., Atherton, S. S. & Yu, F. S. (2006). Herpes simplex virus 1 infection induces the expression of proinflammatory cytokines, interferons and TLR7 in human corneal epithelial cells. Immunology 117, 167-76.
    64.Lundberg, P., Welander, P., Openshaw, H., Nalbandian, C., Edwards, C., Moldawer, L. & Cantin, E. (2003). A locus on mouse chromosome 6 that determines resistance to herpes simplex virus also influences reactivation, while an unlinked locus augments resistance of female mice. J. Virol. 77, 11661-73.
    65.Marsden, H. (1980). Herpes simplex virus in latent infection. Nature 288, 212-3.
    66.Martin, J. R. (1981). Herpes simplex virus types 1 and 2 and multiple sclerosis. Lancet 2, 777-81.
    67.Melchjorsen, J. & Paludan, S. R. (2003). Induction of RANTES/CCL5 by herpes simplex virus is regulated by nuclear factor kappa B and interferon regulatory factor 3. J. Gen. Virol. 84, 2491-5.
    68.Mendez-Samperio, P., Hernandez, M. & Ayala, H. E. (2000). Induction of transforming growth factor-beta 1 production in human cells by herpes simplex virus. J. Interferon Cytokine Res. 20, 273-80.
    69.Milbrandt, J. (1987). A nerve growth factor-induced gene encodes a possible transcriptional regulatory factor. Science 238, 797-9.
    70.Miller, W. H. & Miller, R. L. (1980). Phosphorylation of acyclovir (acycloguanosine) monophosphate by GMP kinase. J. Biol. Chem. 255, 7204-7.
    71.Miller, W. H. & Miller, R. L. (1982). Phosphorylation of acyclovir diphosphate by cellular enzymes. Biochem. Pharmacol. 31, 3879-84.
    72.Minagawa, H., Hashimoto, K. & Yanagi, Y. (2004). Absence of tumour necrosis factor facilitates primary and recurrent herpes simplex virus-1 infections. J. Gen. Virol. 85, 343-7.
    73.Minson, A. C. (1983). The state of the herpes genome. Nature 302, 477.
    74.Mitchell, W. J., De Santo, R. J., Zhang, S. D., Odenwald, W. F. & Arnheiter, H. (1993). Herpes simplex virus pathogenesis in transgenic mice is altered by the homeodomain protein Hox 1.3. J. Virol. 67, 4484-91.
    75.Morimoto, K., Hooper, D. C., Bornhorst, A., Corisdeo, S., Bette, M., Fu, Z. F., Schafer, M. K., Koprowski, H., Weihe, E. & Dietzschold, B. (1996). Intrinsic responses to Borna disease virus infection of the central nervous system. Proc. Natl. Acad. Sci. U S A 93, 13345-50.
    76.Muthukkumar, S., Nair, P., Sells, S. F., Maddiwar, N. G., Jacob, R. J. & Rangnekar, V. M. (1995). Role of EGR-1 in thapsigargin-inducible apoptosis in the melanoma cell line A375-C6. Mol. Cell. Biol. 15, 6262-72.
    77.Nguyen, H. Q., Hoffman-Liebermann, B. & Liebermann, D. A. (1993). The zinc finger transcription factor Egr-1 is essential for and restricts differentiation along the macrophage lineage. Cell 72, 197-209.
    78.Nishi, H., Nishi, K. H. & Johnson, A. C. (2002). Early Growth Response-1 gene mediates up-regulation of epidermal growth factor receptor expression during hypoxia. Cancer Res. 62, 827-34.
    79.O'Donovan, K. J., Tourtellotte, W. G., Millbrandt, J. & Baraban, J. M. (1999). The EGR family of transcription-regulatory factors: progress at the interface of molecular and systems neuroscience. Trends Neurosci. 22, 167-73.
    80.Perng, G. C., Esmaili, D., Slanina, S. M., Yukht, A., Ghiasi, H., Osorio, N., Mott, K. R., Maguen, B., Jin, L., Nesburn, A. B. & Wechsler, S. L. (2001). Three herpes simplex virus type 1 latency-associated transcript mutants with distinct and asymmetric effects on virulence in mice compared with rabbits. J. Virol. 75, 9018-28.
    81.Perng, G. C., Jones, C., Ciacci-Zanella, J., Stone, M., Henderson, G., Yukht, A., Slanina, S. M., Hofman, F. M., Ghiasi, H., Nesburn, A. B. & Wechsler, S. L. (2000). Virus-induced neuronal apoptosis blocked by the herpes simplex virus latency-associated transcript. Science 287, 1500-3.
    82.Petersohn, D., Schoch, S., Brinkmann, D. R. & Thiel, G. (1995). The human synapsin II gene promoter. Possible role for the transcription factor zif268/egr-1, polyoma enhancer activator 3, and AP2. J. Biol. Chem. 270, 24361-9.
    83.Pignatelli, M., Luna-Medina, R., Perez-Rendon, A., Santos, A. & Perez-Castillo, A. (2003). The transcription factor early growth response factor-1 (EGR-1) promotes apoptosis of neuroblastoma cells. Biochem. J. 373, 739-46.
    84.Price, R. W., Katz, B. J. & Notkins, A. L. (1975). Latent infection of the peripheral ANS with herpes simplex virus. Nature 257, 686-8.
    85.Rock, D. L. & Fraser, N. W. (1983). Detection of HSV-1 genome in central nervous system of latently infected mice. Nature 302, 523-5.
    86.Roizman, B. & Knipe, D. M. (2001). Herpes simplex viruses and their replication. In Fields Virology, 4th edn, pp. 2399-2459. Edited by D. M. Knipe, P. M. Howley, G. D. E., M. M. A., L. R. A., B. Roizman & S. E. Straus. Philadelphia: Lippincott Williams & Wilkins.
    87.Russell, D. L., Doyle, K. M., Gonzales-Robayna, I., Pipaon, C. & Richards, J. S. (2003). Egr-1 induction in rat granulosa cells by follicle-stimulating hormone and luteinizing hormone: combinatorial regulation by transcription factors cyclic adenosine 3',5'-monophosphate regulatory element binding protein, serum response factor, sp1, and early growth response factor-1. Mol. Endocrinol. 17, 520-33.
    88.Sainz, B., Jr. & Halford, W. P. (2002). Alpha/Beta interferon and gamma interferon synergize to inhibit the replication of herpes simplex virus type 1. J. Virol. 76, 11541-50.
    89.Sakamoto, K. M., Nimer, S. D., Rosenblatt, J. D. & Gasson, J. C. (1992). HTLV-I and HTLV-II tax trans-activate the human EGR-1 promoter through different cis-acting sequences. Oncogene 7, 2125-30.
    90.Sakimura, K., Kushiya, E., Ogura, A., Kudo, Y., Katagiri, T. & Takahashi, Y. (1995). Upstream and intron regulatory regions for expression of the rat neuron-specific enolase gene. Brain Res. Mol. Brain Res. 28, 19-28.
    91.Schmidbauer, M., Budka, H. & Ambros, P. (1989). Herpes simplex virus (HSV) DNA in microglial nodular brainstem encephalitis. J. Neuropathol. Exp. Neurol. 48, 645-52.
    92.Schmutzhard, E. (2001). Viral infections of the CNS with special emphasis on herpes simplex infections. J. Neurol. 248, 469-77.
    93.Sekizawa, T. & Openshaw, H. (1984). Encephalitis resulting from reactivation of latent herpes simplex virus in mice. J. Virol. 50, 263-6.
    94.Sodeik, B., Ebersold, M. W. & Helenius, A. (1997). Microtubule-mediated transport of incoming herpes simplex virus 1 capsids to the nucleus. J. Cell. Biol. 136, 1007-21.
    95.Stevens, J. G. & Cook, M. L. (1971). Latent herpes simplex virus in spinal ganglia of mice. Science 173, 843-5.
    96.Sze, P. & Herman, R. C. (1992). The herpes simplex virus type 1 ICP6 gene is regulated by a 'leaky' early promoter. Virus Res. 26, 141-52.
    97.Tatarowicz, W. A., Martin, C. E., Pekosz, A. S., Madden, S. L., Rauscher, F. J., 3rd, Chiang, S. Y., Beerman, T. A. & Fraser, N. W. (1997). Repression of the HSV-1 latency-associated transcript (LAT) promoter by the early growth response (EGR) proteins: involvement of a binding site immediately downstream of the TATA box. J. Neurovirol. 3, 212-24.
    98.Tenser, R. B. & Edris, W. A. (1987). Trigeminal ganglion infection by thymidine kinase-negative mutants of herpes simplex virus after in vivo complementation. J. Virol. 61, 2171-4.
    99.Tenser, R. B., Gaydos, A. & Hay, K. A. (1996). Reactivation of thymidine kinase-defective herpes simplex virus is enhanced by nucleoside. J. Virol. 70, 1271-6.
    100.Tenser, R. B., Ressel, S. & Dunstan, M. E. (1981). Herpes simplex virus thymidine kinase expression in trigeminal ganglion infection: correlation of enzyme activity with ganglion virus titer and evidence of in vivo complementation. Virology 112, 328-41.
    101.Thiel, G. & Cibelli, G. (2002). Regulation of life and death by the zinc finger transcription factor Egr-1. J. Cell. Physiol. 193, 287-92.
    102.Thompson, R. L. & Sawtell, N. M. (2001). Herpes simplex virus type 1 latency-associated transcript gene promotes neuronal survival. J. Virol. 75, 6660-75.
    103.Tullo, A. B., Shimeld, C., Blyth, W. A., Hill, T. J. & Easty, D. L. (1982). Spread of virus and distribution of latent infection following ocular herpes simplex in the non-immune and immune mouse. J. Gen. Virol. 63, 95-101.
    104.Tumpey, T. M., Chen, S. H., Oakes, J. E. & Lausch, R. N. (1996). Neutrophil-mediated suppression of virus replication after herpes simplex virus type 1 infection of the murine cornea. J. Virol. 70, 898-904.
    105.Ugolini, G., Kuypers, H. G. & Strick, P. L. (1989). Transneuronal transfer of herpes virus from peripheral nerves to cortex and brainstem. Science 243, 89-91.
    106.Virolle, T., Adamson, E. D., Baron, V., Birle, D., Mercola, D., Mustelin, T. & de Belle, I. (2001). The Egr-1 transcription factor directly activates PTEN during irradiation-induced signalling. Nat. Cell. Biol. 3, 1124-8.
    107.Wagner, A., Doerks, A., Aboud, M., Alonso, A., Tokino, T., Flugel, R. M. & Lochelt, M. (2000). Induction of cellular genes is mediated by the Bel1 transactivator in foamy virus-infected human cells. J. Virol. 74, 4441-7.
    108.Wahl, S. M., McCartney-Francis, N., Allen, J. B., Dougherty, E. B. & Dougherty, S. F. (1990). Macrophage production of TGF-beta and regulation by TGF-beta. Ann. N Y Acad. Sci. 593, 188-96.
    109.Wang, Z. Y., Madden, S. L., Deuel, T. F. & Rauscher, F. J., 3rd (1992). The Wilms' tumor gene product, WT1, represses transcription of the platelet-derived growth factor A-chain gene. J. Biol. Chem. 267, 21999-2002.
    110.Whitley, R. J. (2001). Herpes simplex viruses. In Fields Virology, 4th edn, pp. 2461-2509. Edited by D. M. Knipe, P. M. Howley, G. D. E., M. M. A., L. R. A., B. Roizman & S. E. Straus. Philadelphia: Lippincott Williams & Wilkins.

    下載圖示 校內:2008-05-30公開
    校外:2008-05-30公開
    QR CODE