簡易檢索 / 詳目顯示

研究生: 楊淨雯
Yang, Ching-Wen
論文名稱: 台灣家庭收入與碳排放量關係之研究
Household Income and Carbon Emission in Taiwan
指導教授: 劉亞明
Liu, Ya-Ming
學位類別: 碩士
Master
系所名稱: 社會科學院 - 經濟學系
Department of Economics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 171
中文關鍵詞: 家庭碳排放量家庭直接碳排放量家庭間接碳排放量家庭收入詳細的家庭收入來源OLS回歸分量回歸
外文關鍵詞: Household carbon emission, household direct carbon emission, household indirect carbon emission, household income, detailed household income sources, OLS regression, quantile regression
相關次數: 點閱:161下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用了2019年家庭收支調查表估計家庭碳排放量。透過此家庭碳排放量,我們用OLS回歸和分量回歸,分析了家庭收入與總/直接/間接碳排放的關係。分析結果顯示控制詳細的家庭收入來源可以使我們更好的瞭解家庭收入如何影響碳排放。OLS回歸結果表明,除了家戶雜項收入外,其他家庭收入來源係數均顯著為正。分量回歸的結果主要表明,家庭收入對較高碳排放量家庭的影響更大。家庭特徵可以看到家戶戶長年齡、男戶長家戶、家庭成員人數、戶長教育程度與家庭總碳排放量呈正相關。家戶65歲以上人口數與家庭總碳排放量呈負相關。此外,結果表明家戶所得對家庭間接碳排放的影響大於對家庭直接碳排放的影響。因此,促進購買二手物品和低碳足跡產品可能會成為未來的重要目標。

    In this study, we estimated household carbon emissions using the 2019 Survey of Family Income and Expenditure. By estimating household carbon emissions, we analyzed the relationship between household income and direct/indirect carbon emission through dividing income sources into six categories with OLS regression and quantile regression. The results provide better understanding of how household incomes affect carbon emissions with detailed household income compositions. The OLS regression results show that the coefficients of household income sources are significantly positive except the household income from miscellaneous income. The results from the quantile regression mainly shows that household incomes have higher effects on higher household carbon emission quantiles. With respect to household characteristics, the age of household heads, male-headed households, the number of household members, and the educational attainment of household heads is positively correlated with household total carbon emission. The number of persons above 65 years old is negatively correlated with the household total carbon emission. Furthermore, the results shows that the effects of household income on household indirect carbon emission are larger than that on household direct carbon emission. Thus, promotion to purchase second-handed items and low carbon footprint products can become an important target in the future.

    Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 The Purpose and Significance of the Research 2 1.3 Research Structure 3 Chapter 2 Literature Review 4 2.1 Household Income and Expenditure 4 2.2 Household Carbon Emission Estimation 8 2.3 Household Income and Characteristics Relationship with Carbon Emission 10 Chapter 3 Methodology 17 3.1 Data Source 17 3.2 Calculation 21 3.2.1 Direct Household Carbon Emission 22 3.2.1.1 Petroleum Product 23 3.2.1.2Natural Gas 25 3.2.1.3 Electricity 27 3.2.2 Indirect Household Carbon Emission 28 3.3 Methods 31 3.3.1 Ordinary Least Square Regression 31 3.3.2 Quantile Regression Analysis 32 3.4 Variables 33 3.4.1 Dependent Variables 33 3.4.2 Independent Variables 33 3.4.2.1 Household Income 34 3.4.2.2 Household Characteristics 38 3.4.2.3 Household Residential Area 39 Chapter 4 Result 41 4.1 Descriptive Statistics of Variables 41 4.2 OLS Regression 57 4.2.1 Household Income 63 4.2.2 Household Characteristics 65 4.2.3 Educational Attainment of Household Head 69 4.2.4 Household Residential Area 70 4.3 Quantile Regression 72 4.3.1 The Effect of Household Income 77 Chapter 5 Summary and Discussion 102 5.1 Conclusions and Discussions 102 5.2 Limitations of the Study 106 5.3 Recommendations for Future Research 107 References 108 Appendix 111

    Allen, M.R., O.P. Dube, W. Solecki, F. Aragón-Durand, W. Cramer, S. Humphreys, M. Kainuma, J. Kala, N. Mahowald, Y. Mulugetta, R. Perez, M.Wairiu, and K. Zickfeld. (2018). Framing and Context. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 49-92. https://doi.org/10.1017/9781009157940.003.
    Bin, S., & Dowlatabadi, H. (2005). Consumer lifestyle approach to US energy use and the related CO2 emissions. Energy policy, 33(2), 197-208.
    Druckman, A., & Jackson, T. (2008). Household energy consumption in the UK: A highly geographically and socio-economically disaggregated model. Energy Policy, 36(8), 3177-3192.
    Druckman, A., & Jackson, T. (2009). The carbon footprint of UK households 1990–2004: a socio-economically disaggregated, quasi-multi-regional input–output model. Ecological Economics, 68(7), 2066-2077.
    Du, M., Zhang, X., Xia, L., Cao, L., Zhang, Z., Zhang, L., ... & Cai, B. (2021). The China Carbon Watch (CCW) system: A rapid accounting of household carbon emissions in China at the provincial level. Renewable and Sustainable Energy Reviews, 155, 111825.
    Environmental Protection Administration, Executive Yuan. (2019). 2019 Republic of China National Greenhouse Gases Inventory Report. Republic of China: Author.
    Grunewald, N., Harteisen, M., Lay, J., Minx, J., & Renner, S. (2012). The carbon footprint of Indian households. In 32nd General Conference of The International Association for Research in Income and Wealth. 6A, 5-11.
    Heinonen, J., & Junnila, S. (2011). A carbon consumption comparison of rural and urban lifestyles. Sustainability, 3(8), 1234-1249.
    IPCC (2007). Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K and Reisinger, A. (eds.)]. IPCC, Geneva, Switzerland, 104 pp.
    Irfany, M. I., & Klasen, S. (2016). Inequality in emissions: evidence from Indonesian household. Environmental Economics and Policy Studies, 18(4), 459-483.
    Lee, J., Taherzadeh, O., & Kanemoto, K. (2021). The scale and drivers of carbon footprints in households, cities and regions across India. Global Environmental Change, 66, 102205.
    Lévay, P. Z., Vanhille, J., Goedemé, T., & Verbist, G. (2021). The association between the carbon footprint and the socio-economic characteristics of Belgian households. Ecological Economics, 186, 107065.
    Lin (2014). 老人睡眠知多少. Retrieved from National Taiwan University Hospital, NTUH E-News https://epaper.ntuh.gov.tw/health/201409/pdf/%E8%80%81%E4%BA%BA%E7%9D%A1%E7%9C%A0%E7%9F%A5%E5%A4%9A%E5%B0%91.pdf.
    Minx, J. C., Wiedmann, T., Wood, R., Peters, G. P., Lenzen, M., Owen, A., ... & Ackerman, F. (2009). Input–output analysis and carbon footprinting: an overview of applications. Economic Systems Research, 21(3), 187-216.
    Seriño, M. N. V. (2020). Rising carbon footprint inequality in the Philippines. Environmental Economics and Policy Studies, 22(2), 173-195.
    Wang, X. C., Klemeš, J. J., Wang, Y., Dong, X., Wei, H., Xu, Z., & Varbanov, P. S. (2020). Water-Energy-Carbon Emissions nexus analysis of China: An environmental input-output model-based approach. Applied Energy, 261, 114431.
    Wang, Y., Zhao, H., Li, L., Liu, Z., & Liang, S. (2013). Carbon dioxide emission drivers for a typical metropolis using input–output structural decomposition analysis. Energy Policy, 58, 312-318.
    World Resources Institute and World Business Council for Sustainable Development. (2011). Corporate Value Chain (Scope 3) Accounting and Reporting Standard. Greenhouse Gas Protocol: Author.
    Zen, I. S., Uddin, M. S., Al-Amin, A. Q., Majid, M. R. B., Almulhim, A. I., & Doberstein, B. (2022). Socioeconomics determinants of household carbon footprint in Iskandar Malaysia. Journal of Cleaner Production, 347, 131256.

    下載圖示 校內:2024-09-02公開
    校外:2024-09-02公開
    QR CODE