簡易檢索 / 詳目顯示

研究生: 劉崇智
Liu, Chung-Chi
論文名稱: 壓抑混附波響應於微帶線平板天線之研究
Investigation of Suppressing Spurious Response for The Microstrip Patch Antenna
指導教授: 王永和
Wang, Yeong-Her
洪茂峰
Houng, Mau-Phon
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 103
中文關鍵詞: 缺陷接地結構光子能隙高次諧波
外文關鍵詞: harmonic frequency, defected ground plane, photonic bandgap
相關次數: 點閱:97下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   傳統平板微帶天線在平面設計結構上一直以來深具大眾喜愛,其優點不外乎低成本,設計容易以及易以射頻整合。然而,在設計與應用上卻因頻寛限制、低增益與表面波以及高次諧波所拘束。因此,在本論文中,我們採用二種方式能夠壓抑高次諧波的方法,其一為利用光子能隙(PBG)使其在特定的頻帶下產生禁帶的功能,進而壓抑高次諧波並提昇天線的增益。其二則為利用缺陷接地結構(DGS)將吾想要的頻段形成帶拒濾波器,進而壓抑高次諧波,並附有理論的驗証。

      The microstrip patch antenna is for their advantages of low cost, low profile and easily integration with RF devices by far the most widely used as a low-profile planar
    structure. However, design and applications of onventional patch antenna have been mainly limited for their restrict bandwidth, low gain, and surface wave effects. These thesis consists of two parts. The first part of thesis resents that it can product bandstop performance in special frequency band by using PBG (Photonic Band Gap ). At the same time, it can be suppressed high order harmonic frequency and improved the gain of patch antenna. The second part of thesis presents that it can form notch ilter in our except frequency band by using DGS (defected ground structure),to suppress high order harmonic frequency, and the theory will be proved in the following.

    Contents Abstract (CHINESE)...........................i Abstract (ENGLISH)...........................ii Contents.....................................iii List of Tables...............................Vi List of Figures..............................Vii CHAPTER 1 Introduction.......................1 1.1 Motivation and Literature Survey.........1 1.2 Chapter Outline .........................2 CHAPTER 2 Theory Analysis of Microstrip Antennas..........................4 2.1 Introduction ............................4 2.1.1 Basic Characteristics of the Patch Antenna......................................5 2.1.2 Pattern shapes of the patch antenna……6 2.2 Design Rules Derived from Transmission-Line Model......................6 2.3 Cavity Model.............................7 2.4 Field Distribution in the Cavity.........12 2.5 Field Evaluation for Radiation Models....13 2.5.1 Aperture Field Model...................13 2.5.2 Electric Surface Current Model.........14 2.6 The Relationships between Cavity Modes and Surface Electric Current Distributions.......16 2.7 Field Radiated of TM010 mode.............18 Chapter 3 Spectral Domain Approach for Planar Periodic Structures..........................22 3.1 Floquet's Theorem........................22 3.2 Equivalence Principle....................24 3.3 Basis Functions, Moment Method, and Matrix Equation.....................................25 3.4 Periodic Microstrip Line.................26 Chapter 4 Research of a Broadband Patch Antenna And Suppression Harmonic Frequency By Photonic Bandgap..........................32 4.1 Introduction.............................33 4.2 Input Resistance Match of The Patch Antenna......................................34 4.3 Design of A Broadband Antenna with Slot-loaded..................................38 4.4 Current Reformation by Slot Loading Technique....................................40 4.5 A Broadband Antenna With Slot-Loaded and Suppressing Surface Waves by Periodical Structure In The Ground Plane................42 4.5.1 Introduction...........................42 4.5.2 Antenna Design.........................43 4.5.3 Experimental Results and Discussions...43 4.6 Enhanced Performance of A Patch Antenna Using Periodical Loops.......................45 4.6.1 Antenna Design.........................45 4.6.2 Experimental Results and Discussions...45 Chapter 5 Research of Defected Ground Structures For Harmonic Suppression..........47 5.1 Introduction.............................47 5.2 Characteristic of DGS....................48 5.3 Influence of the Gap Distance............49 5.4 Model and Parameter Extraction...........50 5.5 Antenna Design...........................52 5.5.1 Parameters of DGS structure............52 5.5.2 Parameters of patch antenna structure..52 5.4.3 Experimental Results and Discussions...52 Chapter 6 Conclusion.........................54 References...................................55

    [1] S. K. Sharma and L. Shafai“Enhanced Performance of An Aperture-Coupled
    Rectangular Microstrip Antenna on A Simplified Unipolar Compact Photonic
    Band Gap (UC-PBG) Structure”, Antennas and Propagation Society, IEEE
    International Sym , Vol 2 , pp. 498 –501, 2001.
    [2] T. K. Gaylord and M.G. Moharam,“Analysis and Applications of Optional
    Diffraction by Gratings”, IEEE Proc, Vol.73, pp.884-937, 1985
    [3] D. Maystre,“Electromagnetic Study of Photonic Band Gaps”, Pure Appl. Opt.,
    Vol. 3, No.6, pp.975-993, 1994
    [4] D. M. Pozar, “Microstrip Antennas,” Proc. IEEE, Vol.80, No. 1, pp. 79-81, 1992
    [5] K. C. Gupta, et al., “Microstrip Lines and Slot Lines”, 2nd ed., Artech House,
    Norwood, MA, 1996.
    [6] C. A. Balanis, “Advanced Engineering Electromagnetics”, John Wiley & Sons,
    New York,1989
    [7] R. Garg, P. Bhartia, I. Bahl, and A. Ittipiboon, “Microstrip Antenna Design
    Handbook”, Boston: Arteck House, 2001.
    [8] S. L. Chuang, “The Equivalance of the Electric and Magnetic Surface Current
    Approaches in Microstrip Antenna Studies”, IEEE trans. on Antennas and
    Propagation, Vol. AP-28, pp.569-571., 1980
    [9] P Perlmutter, S. Shritkman, and D. Treves, “Electric Surface Current Model for the
    Analysis of Microstrip Antennas With Application to Rectagular Elements”,
    IEEE trans. on Antennas and Propagation, Vol. AP-33,pp.301-311, 1985.
    56
    [10] M. Kara, “Calculation of the Radiation Patterns of Rectangular Microstrip
    Antenna Elements With Various Substrate Thicknesses”, Microwave and Opt.
    Technol. Lett., Vol. 13, pp. 221-226.pp., 1996
    [11] C.; Li, L. W.; Yeo, T. S.; Leong, M. S., Feb. “FDTD analysis of a slot-loaded
    meandered rectangular patch antenna for dual-frequency operation”,
    Microwaves, antennas and propagation, IEE Proceedings, Vol 148 pp.:65-71,
    2001
    [12] H. M Chen; Y. F. Lin, , 2001, “Experimental and simulation studies of the probe
    fed double U-slot rectangular microstrip antenna”, Asia-Pacific Microwave
    conference, Vol2, pp.:914-917, 2001
    [13] S. K Sharma and L. Shafai, “Enhanced Performance of An Aperture-Coupled
    Rectangular Microstrip Antenna on A Simplified Unipolar Compact
    Photonic Band Gap (UC-PBG) Structure”Antennas and Propagation Society,
    2001 IEEE International Sym , Vol:2 , pp. 498 –501, 2001.
    [14] T. K. Gaylord and M.G. Moharam,“Analysis and Applications of Optional
    Diffraction by Gratings”, IEEE Proc, Vol.73, pp.884-937, 1985
    [15] D. Maystre,“Electromagnetic Study of Photonic Band Gaps”, Pure Appl. Opt.,
    Vol. 3, No.6, pp.975-993, 1994
    [16] S. T. Peng, and R. B. Hwang, “ Analysis of Plane-Wave Scattering by
    Bigratings”, presented at the Int. Conf. Mircrowave Millimeter Wave Technol.,
    Beijing, China, 18-20, 1998
    [17] S. T. Peng ,“Guided Waves on 2D Periodic Structures and Their Relation to
    57
    Planar Photonic Band Gap Structures”, presented at the APMC Workshop
    New Propagation phenomena Millimeter-Wave Planar Circuits/Lines Appl.,
    Yokohama, Japan, 1998.
    [18] G. R. Buesnel, M. J. Cryan, and P. S. Hall, “ Harmonic Control in Active
    Integrated Patch Oscillators” , Electronics Letters , Vol.34 , pp. 228–229, 1998
    [19] H.Y.D. Yang, “Theory and Applications of Electromagnetic Band-Gap
    Structures in Microwaves ”, Microwave Conference, APMC pp.641-646 Vol.2,
    2001
    [20] R. Gonzalo, B. Martinez, P. Maagt, and M. Sorolla, “Improved patch antenna
    performance by using photonic bandgap substrates”, Microwave Opt. Technol.
    Lett., Vol. 24, pp.213-215, 2000
    [21] Y. Qian, R. Coccioli, D. Sievenpiper, V. Radisic, E. Yablonovitch, and T. Itoh, “A
    microstrip patch antenna using novel photonic band-gap structures”,
    Microwave J., Vol.42, pp. 66-76, Jan. 1999
    [22] R. Coccioli, F. R. Yang, K. P. Ma, and T. Itoh, “Aperture-coupled patch antenna
    on UC-PBG substrate”, IEEE Trans. Microwave Theory Tech., Vol.47, pp.
    2123-2130,1999.
    [23] Y. Horii and M. Tsutsumi, “Harmonic control by photonic bandgap on microstrip
    patch antenna”, IEEE Microwave Guided Wave Lett., Vol.9, pp.13-15, 1999
    [24] V. Radisic, Y. Qian, and T. Itoh, “Broadband power amplifier using dielectric
    photonic bandgap structure”, IEEE Microwave Guide Wave Lett. Vol.8, No.1,
    pp.13-14, 1998
    [25] V. Radisic, Y. Qian, R, Coccioli, and T. Itoh, “Novel 2-D photonic bandgap
    58
    structure for microstrip lines”, IEEE Microwave Guide Wave Lett. Vol.8, No.2,
    pp.69-71, 1998
    [26] J. S. Lim, H. S Kim, J. S. Park, D. Ahn, and S. Nam “A power amplifier with
    efficiency improved using defected ground structure”, IEEE Microwave and
    Wireless Components Lett., Vol.11, No.4, pp.170-172, 2001
    [27] C. S. Kim, J. S. Park, D. Ahn, and J. B. Lim “A novel 1-dimensional periodic
    defected ground structure for planar circuits”, IEEE Microwave Guide Wave
    Lett. Vol.10, No.4,pp.131-133, 2000
    [28] J. I. Park, C. S. Kim, J. S. Park, Y. Qian, D. Ahn, and T. Itoh, “Modeling of
    photonic bandgap and its application for the low-pass filter design”, in 99
    APMC Dig., pp.331-334,1999
    [29] D. Ahn, J.S. Park, J. Kim, Y. Qian, and T. Itoh, “A design of the low-pass filter
    using the novel microstrip defected ground structure”, IEEE Trans. On
    Microwave Theory and Tech., Vol.49,No.9, pp.86-93,2001
    [30] J. S. Lim, S. W Lee, J. S. Park, D. Ahn, and S. Nam “A 4:1 unequal Wilkinson
    power divider”, IEEE Microwave and Wireless Components Lett., Vol.11, No.3,
    pp.124-126,2001
    [31] C. S. Kim, J.S. Lim, J. S. Park, D. Ahn, and S. Nam, “A 10dB branch line coupler
    using defected ground structure”, in Proc.EUMC2000, Vol.3, pp.68-71,2000
    [32] H. T. Kang, J. S. Yun, C.S. Kim, J. S. Park, D, Ahn, and G. Y. Kim, “A study on the
    implementation of slow-wave structure using photonic bandgap
    configuration”, IEEE MTT/AP/EMC Korea chapter Microwave and Wave
    propagation Proc., Vol.22 No.1, pp.187-190,1999
    [33] F. Glandorfand I. Wolff, “A spectral-domain analysis of periodically nonuniform
    microstrip lines”, IEEE Trans. Microwave Theory Tech., Vol.35, pp.336-343,
    1987
    [34] R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Photonic
    bound states in periodic dielectric materials”, Phys. Rev. B. Condens. Matter,
    Vol.44, pp. 13772-13774, 1991
    [35] J. R. James, P. S. Hall, and C Wood, “Microstrip Antenna Theory and Design”,
    Peter Peregrinus, Ltd., Stevenage, U.K., 1981
    [36] J. R. James, P. S. Hall, “Handbook of Microstrip Antenna”, Peter Peregrinus,
    Stevengage, U.K., 1989
    [37] R. E. Collin, “ Field theory of Guided Waves”, 2nd ed., Piscatway, NJ: IEEE Press,
    1991

    下載圖示 校內:2005-06-30公開
    校外:2005-06-30公開
    QR CODE