簡易檢索 / 詳目顯示

研究生: 曾瑛仁
Tseng, Ying-Ren
論文名稱: 具奇點結構之內混式霧化器噴霧特性研究
Atomization Performance of an Internal-Mixing Nozzle with Singularity Structure
指導教授: 王覺寬
wang, Muh-Rong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 124
中文關鍵詞: 渦漩噴嘴出口面積氣助式噴嘴霧化
外文關鍵詞: Swirler, Area of the orifice, Air-Assist, Atomization
相關次數: 點閱:130下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究探討內混式氣助式霧化器在不同出口面積及不同漩渦腔(Swirling chamber)長度,以及在噴嘴內配置中心體(Center body)後,其對霧化特性之影響。所使用之霧化器分別為P型霧化器(P-1、P-2、P-3霧化器)與N型霧化器(N-1、N-2、N-3霧化器),探討不同結構下之霧化器其霧化特性,噴霧之粒度分布以Malvern公司雷射繞射式RT-Sizer粒徑分析儀量測。
      研究結果顯示,當霧化器使用P型霧化器時,在噴嘴出口面積為12.57mm2(P-3霧化器)時,會有較小之噴霧平均粒徑(SMD)與粒徑分布標準差(σ)。例如在液體壓力3.0 bar,氣體壓力4.5 bar下,P-1霧化器所產生噴霧之噴霧平均粒徑為4.68μm,噴霧粒徑分布標準差為16.93μm;P-2霧化器之噴霧平均粒徑則為3.52μm,噴霧粒徑分布標準差為8.54μm;而使用P-3霧化器實驗,噴霧之噴霧平均粒徑即可大幅縮減至3.00μm,噴霧粒徑分布標準差亦可降至5.69μm。將噴嘴出口面積從3.14 mm2加大至12.57 mm2時,噴霧平均粒徑由4.68μm降低至3.00μm減小了36%,而噴霧粒徑分布標準差由16.93μm降低至5.69μm下降了66%,這表示面積參數為一種有效之霧化控制機構。利用增加出口面積之方式,來提高霧化能量,使得噴霧顆粒粒徑降低,同時也促進噴霧顆粒分布窄化,對於工程上需要微小化及窄化噴霧之場合,這是甚佳之應用。
      進一步改變噴嘴內部結構而使用N型霧化器,由研究結果顯示,N-1霧化器在噴霧平均粒徑與霧化粒子之粒度分布方面均優於N-2與N-3霧化器,這表示霧化器內部配置中心體去提供一個表面積讓液體附著,且中心體與渦漩腔的管壁所形成之流道易使液體與霧化氣體之間產生一較高之相對速度,因此,霧化器內部加裝中心體對霧化效能是有所提昇,而當渦漩腔的加長無助於霧化效能的提昇,反而減慢了液體與霧化氣體之間的相對速度,而使的霧化後的粒子產生較多之大顆粒,而使得霧化效果變差。例如在液體壓力3.0 bar,氣體壓力4.5 bar下,N-1霧化器所產生噴霧之噴霧平均粒徑為3.77μm,噴霧粒徑分布標準差為9.58μm;N-2霧化器之噴霧平均粒徑則為4.03μm,噴霧粒徑分布標準差為10.62μm;而使用N-3霧化器之噴霧平均粒徑則為4.76μm,噴霧粒徑分布標準差為19.56μm,因此,在噴嘴內部加裝一中心體時,可以使噴霧平均粒徑從4.76μm降至 3.77μm下降21%,而噴霧粒徑分布標準差從19.56μm降至9.58μm下降51%。

      This research program investigates the atomization characteristics of the internal mixing atomizer under different design configurations. The design parameters include the orifice diameter, the swirler and the center body, etc. The atomizers are designed P-type atomizers (i.e., P-1、P-2、P-3 atomizers) and N-type atomizers (i.e., N-1、N-2、N-3 atomizers). The effects of these design parameter on the atomization performance are described. Malvern RT-Sizer measures the particle size of the spray.
      Results show that P-type atomizer with large orifice area produces spray with fine particle size and narrow size distribution. As a typical example, spray with (SMD, σ)=(4.68,16.93) μm can be obtained using P-1 atomizer under a liquid pressure of 3.0bar and gas pressure of 4.5bar. Furthermore, (SMD, σ)=(3.52, 8.54)μm and (SMD, σ)=(3.00, 5.69)μm can be aliened P-2 and P-3 atomizers, respectively. The enhanced atomization performance by increasing orifice area is due to the increase in gas-to-liquid mass ratio.
      Results also show that the N-1 atomizer with center body has better performances than N-2 and N-3 atomizer. This indicates that the atomizer with center body can produce fine droplets and narrow size distribution. The atomizer with longer swirling chamber degrades the atomization performance. As a typical example, spray with (SMD, σ)=(3.77, 9.58)μm can be achieved using N-1 atomizer under liquid pressure of 3.0bar and gas pressure of 4.5bar. The cases of N-2 and N-3 atomizer (SMD, σ)=(4.03, 10.62)μm, (SMD, σ)=(4.76, 19.56)μm respectively. Hence the design of atomizer with center body can be used to enhance the atomization performance.

    中文摘要 英文摘要 誌謝 目錄 Ⅰ 表目錄 Ⅲ 圖目錄 Ⅳ 符號說明 Ⅸ 第一章 緒論 1 1-1 簡介 1 1-2 文獻回顧 2 1-2-1 液體碎化過程 3 1-2-2 噴霧流場中之空氣動力現象 5 1-2-3 雙流體式霧化器 6 1-3 研究動機 10 第二章 實驗設備及儀器 12 2-1 實驗設備 12 2-1-1 霧化器測試台架 12 2-1-2 液體供應系統 12 2-1-3 噴嘴所需高壓氣體供應系統 13 2-1-4 抽氣整流系統 13 2-1-5 霧化裝置 13 2-2 量測儀器 14 2-2-1 RT-Sizer粒徑分析儀 14 2-2-2 攝影器材及影像處理系統 15 2-3主要量測參數 15 第三章 實驗步驟及方法 18 3-1 實驗量測條件 18 3-2 流量的量測 18 3-3 視流場觀察 19 3-4 RT-Sizer粒徑分析儀的量測 19 3-5 數據取樣與分析 20 3-6 實驗誤差 20 第四章 結果與討論 22 4-1 噴霧流場之視流觀測研究 22 4-2 不同噴嘴出口面積對霧化特性之影響 24 4-2-1噴霧平均粒徑沿軸向位置之變化 24 4-2-2噴嘴出口面積對流量之影響 25 4-2-3噴嘴出口面積對氣液質量比之影響 28 4-2-4噴嘴出口面積對噴霧平均粒徑之影響 29 4-3 氣渦漩之霧化器對霧化特性之影響 31 4-3-1噴霧平均粒徑在徑向位置上之變化 32 4-3-2不同內部結構之N型霧化器對流量之影響 33 4-3-3不同內部結構之N型霧化器對氣液質量比之影響 34 4-3-4不同內部結構之N型霧化器對噴霧平均粒徑之影響 35 4-4 P型霧化器與N型霧化器之比較 38 第五章 結論 41 參考文獻 44 自述 124

    1.A. H. Lefebvre, “Gas Turbine Combustion,” Chapter10, Hemisphere Publishing Corporation, New York, 1983.
    2.林富祈, “壓力式渦漩霧化器噴霧錐角控制之研究,” 國立成功大學碩士論文, 1997.
    3.A. H. Lefebvre, “Atomization and Sprays,” Hemisphere Publishing Corporation, New York, 1989.
    4.R. A. Castleman Jr., “The Mechanism of the Atomization of Liquids,” Burean of Standards Journal of Research, Vol.6, pp.369-376, 1930.
    5.N. Dombrowski and W. R. Johns, ”The Aerodynamic Instability and Disintegration of Viscous Liquid Sheets,” Chem. Eng. Sci., Vol.18, pp.203-214, 1963.
    6.B. E. Stapper, W. A. Sowa and G. S. Samuelsen, “An Experimental Study of the Effects of Liquid Properties on the Breakup of a Two-dimensional Liquid Sheet,” ASME, Journal of Engineering for Gas Turbines and Power, Vol.114, pp.39-45, 1992.
    7.R. P. Fraser, “Liquid Fuel Atomization,” Sixth Symposium (International) on Combustion, Rein-hold, New York, pp.687-701, 1957.
    8.M.C. Butler Ellis and C.R. Tuck, “How Adjuvants Influence Spray Formation with Different Hydraulic Nozzle, “ Crop Protection, Vol.18, pp.101-109, 1999.
    9.M.C. Butler Ellis, C.R. Tuck and P,C.H. Miller, “How Surface Tension of Surfactant Solution Influences the Characteristics of Sprays Produced by Hydraulic Nozzle Used for Pesticide Application,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 180, pp.267-276, 2001.
    10.G. D. Crapper, N. Dombrowski, W. P. Jepson and G. A. D. Pyott, ”A Note on the Growth of Kelvin-Helmholtz Waves on Thin Liquid Sheets,” J. Fluid Mech., Vol.57, part 4, pp.671-672, 1973.
    11.H. C. Simmons, “The Atomization of Liquid, Principles and Methods,” Parker Hannifin Report No.8, pp.61-92, 1982.
    12.C.H. Lee and R.D. Retiz, “An Experimental Study of the Effect of Gas Density on the Distortion and Breakup Mechanism of Drops in High Speed Gas Stream,” International Journal of Multiphase Flow., Vol.26, pp.299-244, 2000.
    13.許耀仁, “氣衝式平面噴嘴液膜霧化特性之研究,” 國立成功大學碩士論文, 1993.
    14.J.H. Chin, D. Nickolaus and A.H. Lefebvre, “Influence of Distance on the Spray Characteristics of Pressure-Swirl Atomizer,” ASME, Journal of Engineering for Gas Turbines and Power, Vol.108, pp.219-224,1986.
    15.趙金榮, “相差都卜勒粒子分析儀應用於燃油噴嘴特性之研究”, 國立成功大學碩士論文, 1988.
    16.蔡清洲, “漩渦噴流中氣液兩相交互作用實驗分析,” 國立成功大學碩士論文, 1989.
    17.洪嘉宏, “中空錐形噴霧中連續相及離散相之動力特性研究,” 國立成功大學博士論文, 1991.
    18.楊坤和, “研究型氣助式噴霧特性研究,” 國立成功大學博士論文, 1992.
    19.賴維祥, “噴霧發展過程中粒子之輸送現象及其紊流條調制之研究,” 國立成功大學博士論文, 1995.
    20.徐明生, “雙流體式平面噴嘴霧化特性之研究,” 國立成功大學碩士論文, 1995.
    21.A. A. Rizkalla and A. H. Lefebvre, “Influence of Liquid Properties on Airblast Atomizer Spray Characteristics,” J. Eng. Power, pp.173-179, April 1975.
    22.A. A. Rizkalla and A. H. Lefebvre, “The Influence of Air and Liquid Properties on Airblast Atomization,” J. Fluids Eng., Vol.97, pp.316-320, 1975.
    23.N. K. Rizk and A. H. Lefebvre, “Influence of Atomizer Design Feature on Mean Drop Size,” AIAA Journal, Vol.21, No.8, pp.1139-1142, 1983.
    24.J. Beck, A. H. Lefebvre and T. Koblish, “Airblast Atomization at Conditions of Low Air Velocity,” Paper No, AIAA, 89-0217, 1989.
    25.J. E. Beck, A. H. Lefebvre and T. R. Koblish, “Liquid Sheet Disintegration by Impinging Air Streams,” Atomization and Sprays, Vol.1, No.2, pp.155-170, 1991.
    26.J. E. Beck and A. H. Lefebvre, “Airblast Atomization at Conditions of Low Air Velocity,” J. Propulsion, Vol.7, No.2, March-April 1991.
    27.M. Aligner and S. Witting, “Swirl and Counterswirl Effects in Prefilming Airblast Atomization,” Trans. ASME, J. Eng. Power, Vol.102, pp.706-710, 1980.
    28.T. Sattlemayer and S. Witting, “Internal Flow Effects in Prefilming Airblast Atomizers Mechanisms of Atomization and Droplet Spectra,” ASME Journal of Engineering for Gas Turbine and Power, Vol.108, pp.465-472, 1986.
    29.C. Press, A. K. Gupta and H. G. Semerjian, “Aerodynamic Effects on Fuel Spray Characteristics: Air-assist Atomizer,” HTD, Vol.104, pp.111-119, 1988.
    30.J. D. Whitlow and A. H. Lefebvre, “Effervescent Atomizer Operation and Spray Characteristics,” Atomization and Spray, Vol.3, pp.137-155, 1993.
    31.王承光, “氣助式及氣衝式平面噴嘴中霧化空氣對噴霧特性之研究,” 國立成功大學碩士論文, 1996.
    32.S. K. Chen and A. H. Lefebvre, “Spray Cone Angles of Effervescent Atomizers,” Atomization and Spray, Vol.4, pp.291-301, 1994.
    33.S. D. Sovani, P. E. Sojka and A. H. Lefebvre, “Effervescent Atomization,” Progress in Energy and Combustion Science, Vol.27 pp.483-521, 2001.
    34.M. V. Panchagnula and P. E. Sojka, “Spatial Droplet Velocity and Size Profiles in Effervescent Atomizer-Produced Sprays,” Fuel, Vol.78 pp.729-741, 1999.
    35.B. Leroux, O. Delabroy and F. Lacas, “Influence of Superpulsating Mode on Atomization Properties in Coaxial Air-assisted Atomizers,” Eighth International Conference on Liquid Atomization and Spray Systems, July 2000.
    36.A. Kufferath, B. Wende and W. Leuckel, ”Influence of Liquid Flow Conditions on Spray Characteristics of Internal-Mixing Twin-Fluid Atomizers,” International Journal of Heat and Fluid Flow, Vol.20 pp.513-519, 1999.
    37.L. J. Guo, G. J. Li, B. Chen, X. J. Chen, D. D. Papailiou and Th. Panidis, “Study on Gas-Liquid Two-Phase Spraying Characteristics of Nozzles for the Humidification of Smoke,” Experimental Thermal and Fluid Science, Vol.26 pp.715-722, 2002.
    38.林彰廷, “多噴頭效應在氣助式噴嘴中之霧化特性研究,” 國立成功大學碩士論文, 2003.

    下載圖示 校內:立即公開
    校外:2004-06-29公開
    QR CODE