簡易檢索 / 詳目顯示

研究生: 林京叡
Lin, Jing-Ruei
論文名稱: 應用API於小腿義肢承筒設計及CAD/RP製程
Application of API for Transtibial Socket Design with CAD/RP Process
指導教授: 許來興
Hsu, Lai-Hsing
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 93
中文關鍵詞: 小腿義肢承筒電腦輔助設計API快速成型機
外文關鍵詞: prosthetic socket, CAD, API, rapid prototyping
相關次數: 點閱:212下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用逆向工程以及CAD (Computer-Aided Design)軟體,發展出一套小腿義肢承筒的設計製作流程。一個傳統手工製作之小腿義肢承筒的好壞取決於義肢師的經驗以及技巧,因此不同的義肢師製作出的小腿義肢承筒品質也良莠不齊。本研究透過逆向工程及CAD軟體的應用,來取代傳統手工小腿義肢承筒需要仰賴經驗及技巧的石膏編修動作,以協助較為資淺的義肢師製作出一定水準之小腿義肢承筒,降低所需之經驗門檻。
    由於使用CAD軟體仍需有一定的電腦繪圖基礎,本研究利用SolidWorks API (Application Programming Interface) 的功能函式,並參照經驗豐富的義肢師所提供的專業知識及建議來開發小腿義肢承筒設計介面,使用者能夠透過該介面輕鬆完成繁複的繪圖動作。
    透過真空取模工具搭配形狀編修軟墊,取得形狀編修過後的殘肢陽模;經由3D掃描器取得殘肢陽模的數位檔,以CAD軟體將該數位檔製成承筒陽模模型;以STL檔案輸出至快速成型機 (Rapid Prototyping,RP) 製作出承筒陽模,並交由義肢師以此陽模製作出承筒進行最後的組裝與調整。
    於案例研究中,透過一位64歲男性截肢患者穿戴以本研究CAD/RP製程製做之小腿義肢承筒,測量承筒與殘肢間之介面壓力以及殘肢各部位耐疼痛壓力,驗證本研究之可行性。雖實驗結果不如預期,但患者仍然能夠穿戴來回行走於實驗步道,且無脫落之虞,說明本研究目前雖然可行但仍有進步的空間。

    The quality of a conventional transtibial socket strongly depends on the skills of prosthetists, and would be diverse due to different prosthetists. This research developed an interface module in a Computer Aided-Design (CAD) software to design a transtibial socket. With employing the techniques of reverse engineering, this helps an inexperienced prosthetist to design and fabricate an acceptable socket.
    To assist a CAD user to design the shape of a transtibial socket, this research developed an interface module by utilizing the functions of SolidWorks Application Programming Interface (API). The users therefore can avoid a complex drafting process to create socket shape easily by this interface module.
    This research used a 3D scanner to collect the data of the stump mold obtained from the vacuum casting tool, and then used a rapid prototyping (RP) machine to fabricate the socket mold designed by the interface module. Finally, a socket can be fabricated from the RP socket mold, and be assembled as a transtibial prosthesis.
    A 64-year-old male amputee is the subject in the case study. To verify if the socket fabricated is fit or not, this research measured the interface pressure between the socket and the stump. Although the results are not satisfactory, the subject could walk freely with it, and it is acceptable for the subject to use. This result also left room for further improvements to make this research better.

    Abstract I 摘要 II 誌謝 III Contents IV List of Figures VI List of Tables IX Chapter 1 Introduction 1 1.1. Background 1 1.2. Motivation 2 1.3. Framework of Thesis 3 Chapter 2 Literature Review 4 2.1. Amputation and Prosthesis Introduction 4 2.2. Transtibial Amputation and Transtibial Prosthesis 5 2.3. Reverse Engineering 8 2.3.1. 3D Scanner 8 2.3.2. Computer-Aided Design System 10 2.3.3. Rapid Prototyping 12 Chapter 3 Introduction to Transtibial Socket 16 3.1. Manufacturing Process of Conventional Socket 16 3.1.1. Plaster Positive Mold 17 3.1.2. Modification of Plaster Positive Mold 20 3.1.3. PP Socket and UPR Socket 22 3.2. Manufacturing Process of a CAD/RP Socket 25 3.2.1. Vacuum Casting 27 3.2.2. 3D Scanning of Positive Mold 30 3.2.3. CAD/RP Socket Design 32 3.2.4. Fabrication of Positive Socket Mold 32 3.2.5. Fabrication of CAD/RP Socket 34 3.3. Comparison of Manufacturing Processes and Sockets 34 3.3.1. Conventional Process and CAD/RP Process 34 3.3.2. RP Socket and Positive RP Socket Mold 35 3.3.3. PP Socket and UPR Socket 37 Chapter 4 Transtibial Socket Design Method and the Interface Module 39 4.1. Socket Design Process 39 4.1.1. Reconstruction of Mesh Data 41 4.1.2. Model Construction 43 4.1.3. Export an STL File 51 4.2. Design Tools for User Interface 52 4.2.1. SolidWorks API 53 4.2.2. Visual C# 56 4.2.3. Macro 57 4.3. Transtibial Socket Design Interface Module 61 4.3.1. Create a Reference Plane 63 4.3.2. Create Section Curves 64 4.3.3. Create a Base 65 4.3.4. Create the Suspension 66 4.3.5. Create a Guide Curve 66 4.3.6. Loft the Profiles 67 4.3.7. Offset the Surface 68 4.3.8. Thicken the Surface 69 4.3.9. Export an STL File 70 Chapter 5 Case Study 72 5.1. Case Study 72 5.2. Interface Pressure and Pain Test 76 5.2.1. Measurement of Interface Pressure 76 5.2.2. Pain Test 78 5.3. Result and Discussion 79 Chapter 6 Conclusion 86 6.1. Conclusion 86 6.2. Future Work 87 References 89 自述 93

    [Bowk 92] Bowker, J. H. and Michael, J. W., Atlas of Limb Prosthetics: Surgical, Prosthetic, and Rehabilitation Principles, 2nd Ed., Mosby-Year Book, 1992.
    [Burn 93] Burns, Marshal. Automated Fabrication. Prentice Hall. ISBN 978-0-13-119462-5. 1993.
    [Chan 12] 張世薪,CAD軟體之API應用於小腿義肢承筒設計模組,國立成功大學機械工程學系,碩士論文,台南市,2012。
    [Chen 06] 陳彥名,應用CAD軟體API與快速成型技術製作義肢承筒,國立成功大學機械工程學系,碩士論文,台南市,2006。
    [Cony 99] Convery. P, A. W. P. B. Socket/Stump Interface Dynamic Pressure Distributions Recorded During The Prosthetic Stance Phase of Gait of a Trans-Tibial Amputee Wearing a Hydrocast Socket. Prosthetics and Orthotics International, 23, 107-112, 1999.
    [Cust 13] CustomPartNet. http://www.custompartnet.com. 2013.
    [Davi 13] David Laserscanner. http://www.david-laserscanner.com. 2013.
    [eFun 13] eFunda, Inc. "Rapid Prototyping: An Overview". Efunda.com. 2013.
    [Foor 65] Foort, J. The Patella-Tendon Bearing Prosthesis for Below-Knee Amputees, a Review of Technique and Criteria. Artificial Limbs, 9(1), 4-13. 1965.
    [Free 98] Freeman, D., Wontorcik, L. Stereolithography and Prosthetic Test Socket Manufacture: A Cost/Benefit Analysis. Journal of Prosthetics and Orthotics, 10(1), 17-20. 1998.
    [Gree 59] Greenwald, Irwin D.; Maureen Kane. "The Share 709 System: Programming and Modification". Journal of the ACM (New York, NY, USA: ACM) 6 (2): 128–133. 1959.
    [Hsu 07] Hsu, L. H., Huang, G. F., Lu, C. T., Lai, C. W., Chen, Y. M., I.C. Yu, Shih, H.S., “The Application of Rapid Prototyping for the Design and Manufacturing of Transtibial Prosthetic Socket,” International Conference On Advanced Manufacturing Technology, 2007.
    [Hsu 10] Hsu, L. H., Huang, G. F., Lu, C. T., Hong, T. Y., & Liu, S. H. The Development of a Rapid Prototyping Prosthetic Socket Coated with a Resin Layer for Transtibial Amputees. Prosthetics and Orthotics International, 34(1), 37-45. 2010.
    [Jan 12] 詹濬瑜,三維量測應用於快速成型小腿義肢承筒模型之驗證,國立成功大學機械工程學系,碩士論文,台南市,2012。
    [Ji 10] 紀傑騰,真空成形殘肢模型應用於膝下義肢承筒之設計與製作,國立成功大學機械工程學系,台南市,2010。
    [Kuhn 66] G. G. K. B. M. a. U. S. KBM-Prothese Vol. 14. Nancy France: Atlas d`Appareillage Prothetique et Orthopidique. 1966.
    [Li 07] Li, H., “The Further Development and Application of SolidWorks”, International Symposium on Computer Science & Technology, 2007.
    [Liou 13] 劉文慶,義肢師口述,上強義肢裝具有限公司,台南市,2013。
    [Liu 08] 呂權庭,加強樹脂強化層之快速原型製造之膝下義肢承筒之彎曲強度與介面應力之研究,國立成功大學機械工程學系,台南市, 2008。
    [Micr 13] Microsoft. http://msdn.microsoft.com/en-us/library/z1zx9t92.aspx. 2013.
    [Mona 02] Monash University. Digital manipulation of prosthesis data for the introduction of advanced manufacturing techniques. http://rehabtech.eng.monash.edu.au/cadcam/INFO/details.htm. 2002.
    [Neum 09] E. S. State-of-the-Science Review of Transtibial Prosthesis Alignment Perturbation, Journal of Prosthetics and Orthotics 21(4), 175-193. 2009.
    [Öber 98] Öberg, K., Kofman, J., Karisson, A., Lindström, B., & Sigblad, G. The CAPOD System - A Scandinavian CAD/CAM System for Prosthetic Sockets. JPO: Journal of Prosthetics and Orthotics, 1(3), 139-148. 1989.
    [Össu 13] Össur. http://www.ossur.com/Americas. 2013.
    [Radc 61] Radcliffe, C. W., & Foort, J The Patellar-Tendon-Bearing Below-Knee Prosthesis. University of California (Berkeley and San Francisco), Biomechanics Laboratory. 1961.
    [Roge 07] Rogers, B., Bosker, G. W., Crawford, R.H., Faustini, M. C., Neptune, R. R., Walden, G. ,Andrew J. Gitter. Advanced Trans-Tibial Socket Fabrication Using Selective Laser Sintering. Prosthetics and Orthotics International, 31(1), 88-100. 2007.
    [Romp 13] ROMP, the range of motion project. http://www.rompglobal.org/prosthetics101.html. 2013.
    [Sant 05] Santosh, G. Z., Elizaberth, S., & Joan, E. S. A Method for Aligning Trans-Tibial Residual Limb Shapes So as to Identify Regions of Shape Change. IEEE Transactions on Neural System and Rehabilitation Engineering, 13(4). December 2005.
    [Sawa 85] 澤村誠志著,蕭英宏譯,截肢義肢學,高雄縣私立樹人醫事職業學校復健技術科教學委員會編印,1985。
    [Soli 13] SolidWorks Corporation, SolidWorks and Add-Ins API Helps, http://www.solidworks.com. 2013.
    [Staa 87] T. B. L., J. The UCLA Total Surface Bearing Suction Below-Knee Prosthesis. Clinical Prosthetics and Orthotics, 11, 118-130. 1987.
    [Stei 13] Steinbichler Optotechnik, T-SCAN2. http://www.steinbichler.de/de/main/t-scan3.htm. 2013.
    [Teks 13] Tekscan. http://www.tekscan.com/9801-pressure-sensor. 2013.
    [Vara 97] Varady, T., Martin, R., Cox, J. "Reverse engineering of geometric models–an introduction". Computer-Aided Design 29 (4): 255–268. 1997.
    [Wagn 13] Wagner, http://wagnerforce.com/force_gauges/fdk_mechanical_dial_force_gauge.php. 2013.
    [Yang 10] 楊懷生,以田口法分析包覆樹脂之FDM成型材料之彎曲強度,國立成功大學機械工程學系,碩士論文,台南市,2010。
    [Zahe 86] Zahedi, M. S., Spence, W. D., Solomonidis, S. E., & Paul, J. P. Alignment of Lower-Limb Prostheses. Journal of Rehabilitation Research and Development, 23(2), 2-19. 1986.
    [3DSy 13] 3D SYSTEMS, http://www.3dsystems.com. 2013.

    下載圖示 校內:2015-08-30公開
    校外:2015-08-30公開
    QR CODE