簡易檢索 / 詳目顯示

研究生: 廖婕如
Liao, Chieh-Ju
論文名稱: 一般固溶熱處理與過高溫固溶熱處理對6066鋁合金時效材拉伸性質與拉伸可靠度之影響
Influences of Normal and Overheated Solution Treatments on Tensile Properties and Tensile Reliability of Aged 6066 Aluminum Alloy
指導教授: 呂傳盛
Lui, Truan-Sheng
陳立輝
Chen, Li-Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 70
中文關鍵詞: 6066鋁合金熱處理拉伸性質韋伯分佈
外文關鍵詞: 6066 aluminum alloy, Heat Teatments, Tensile Properties, Weibull distribution
相關次數: 點閱:86下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    6066鋁合金具有中高強度、抗腐蝕性佳、成形性佳以及可焊性佳等優點,因此廣泛運用在運輸、建築工業上。儘管6066鋁合金具有以上優點,但是其拉伸性質穩定性差。本實驗於一般固溶熱處理前施以一段高溫熱處理,探討改善第二相粗大問題是否能夠提高其拉伸性質之穩定性。另外,利用韋伯分佈評估6066鋁合金之降伏強度與總延伸率之可靠度。

    本研究中,6066鋁合金分成兩種熱處理方式。一種為一般固溶熱處理,固溶溫度為530 oC,時間2小時,之後進行T6處理,溫度為175 oC,時間為峰值時效6小時(稱為530-N6材)。另一種為過高溫固溶熱處理,過高溫固溶溫度為 550 oC至580 oC,時間1小時,接著進行一般固溶熱處理,530 oC,時間2小時,之後進行T6處理,溫度為175 oC,時間為亞時效6小時與峰值時效9小時。

    實驗結果顯示,當過高溫固溶處理溫度為560 oC左右時可發現Mg2Si相發生分解。除此之外,過高溫固溶處理亦會改變Al12(FeMnCu)3Si相形貌由碎片狀轉變為團狀。在拉伸性質部分,Q相(Al5Cu2Mg8Si6)熔融凝固後造成過高溫固溶處理T6材之拉伸強度下降。儘管過高溫固溶處理後之拉伸強度不及一般固溶峰值時效材,但是其韌性較佳,由其是過高溫固溶處理亞時效材。在韋伯分佈部分,過高溫固溶亞處理時效材之YS可靠度較530-N6材好,且位置參數與530-N6材相近。韋伯分佈數據亦顯示,過高溫固溶處理亞時效材能夠改善6066鋁合金降伏強度、總延伸率之數據分佈集中性。由實驗結果得知,過高溫固溶亞時效材之6066鋁合金拉伸數據分佈集中,十分適合應用在需要高韌性條件之汽車與建築工業上。

    6066 aluminum alloy can be used in a variety of applications including automotive industries and architecture due to its attractive properties, such as medium strength, good corrosion resistance, formability and weldability. However, it has a huge fluctuation on tensile properties. In order to assess reliability of tensile properties, specimens were treated with overheated solution treatment to make coarse phases homogenously into microstructure, then using Weibull analysis assess reliability of yield strength and total elongation.

    In this thesis, some specimens of 6066 aluminum alloy were treated with normal solution treatment at 530 oC/2h prior to water quenching and aging at 175 oC/6h. The others were treated with heating at 550 oC to 580 oC/1 h followed by solution treatment at 530 oC for 2h prior to water quenching and aging at 175 oC/6h or 9h. We discuss tensile tests and reliability of both heat treatments on 6066 aluminum alloy.

    The results showed that overheated solution treatment plays an important role in the decrease of Mg2Si size when samples were heated at 560 oC. Furthermore, morphology of Al12(FeMnCu)3Si phase was changed from script-like features to rounded features. This melted Q phase (Al5Cu2Mg8Si6) caused tensile strength of samples lower than normal heat treatment followed by peakaging. Although Yield strength of overheated solution treatment prior to peakaging or underaging was less than normal solution treatment prior to peakaging, material toughness was much better than normal one. With respect to Weibull analysis, overheated solution treatment prior to underaging could easily predict stress that a sample begins to deform plastically. Location parameter of this treatment is as same as normal solution treatment prior to peaking. The Weibull analysis results also showed that overheated solution treatment prior to underaging could improve reliability of yield strength and total elongation Weibull distribution function. Totally, normal solution treatment can be substituted for overheated solution treatment prior underaging due to its tensile reliability and toughness. Therefore, this heat treatment is suitable for 6066 alloy on high toughness conditions especially for automobile and architecture.

    總目錄 摘要 Ⅰ Abstract Ⅱ 致謝 Ⅳ 總目錄 Ⅵ 表目錄 Ⅸ 圖目錄 Ⅹ 第一章 前言 1 第二章 文獻回顧 2 2-1 Al-Mg-Si合金簡介 2 2-1-1 Al-Mg-Si合金之化學組成 2 2-1-2 Al-Mg-Si 合金之析出序列 2 2-1-3 化學組成之影響 3 2-1-4 固溶熱處理之影響 3 2-2 可靠度工程 4 2-2-1 材料可靠度工程之統計意義 4 2-2-2 機率密度函數 5 2-2-3 累積破壞機率函數 6 2-2-4 拉伸可靠度函數 6 2-2-5 破壞率函數 7 2-3 韋伯分布 8 2-3-1 韋伯分布函數 8 2-3-2 韋伯三參數之物理意義 9 2-3-2-1 韋伯模數 9 2-3-2-2 尺度參數 10 2-3-2-3 位置參數 11 2-3-3 韋伯三參數之求法 11 第三章 實驗方法 21 3-1 實驗流程 21 3-2 材料製備 21 3-3 熱處理條件 21 3-3-1 一般固溶熱處理之人工時效時間選定 21 3-3-2 過高溫固溶溫度之選定 22 3-4 微觀組織觀察 23 3-5 拉伸試片製備與拉伸測試 23 3-6 拉伸可靠度分析 24 第四章 實驗結果與討論 31 4-1 一般固溶熱處理與過高溫固溶熱處理後之顯微組織 31 4-1-1 530-N6材 31 4-1-2 560-H9材 31 4-1-3 H6材 32 4-2 一般固溶熱處理與過高溫固溶熱處理後之拉伸性質 33 4-2-1 530-N6材與H材之拉伸強度 33 4-2-2 530-N6材與H材之延伸率 34 4-2-3 一般固溶熱處理與過高溫固溶熱處理之拉伸韌性比較 35 4-3 拉伸可靠度分析 36 4-3-1 530-N6材與H材降伏強度之韋伯分析 36 4-3-2 530-N6材與H材總延伸率之韋伯分析 38 4-4 一般固溶處理與過高溫固溶熱處理之最佳熱處理條件討論 40 第五章 結論 65 第六章 參考文獻 66   表目錄 表3-1 6066鋁合金之一般固溶熱處理與過高溫固溶熱處理條件 25 表3-2 6066鋁合金之化學組成 26 表4-1 530-N6材與H材之YS其韋伯三參數與相關統計結果 42 表4-2 530-N6材與H材之TE其韋伯三參數與相關統計結果 43   圖目錄 圖2-1 Al與Mg2Si之擬二元合金相圖 14 圖2-2 由機率密度函數f(x)與可靠度R(x)求破壞率λ(x) 15 圖2-3 不同韋伯模數(m)與機率密度函數f(x)之關係(xo=0、η=5) 16 圖2-4 不同韋伯模數(m)與可靠度R(x)之關係(xo=0、η=5) 17 圖2-5 不同韋伯模數(m)與破壞率λ(x)之關係(xo=0、η=5) 18 圖2-6 不同尺度參數(η)與機率密度函數f(x)之關係(xo=0、m=4) 19 圖2-7 不同位置參數(x0)與機率密度函數f(x)之關係(η=5、m=5) 20 圖3-1 實驗流程圖 27 圖3-2 6066鋁合金之人工時效(175 oC)曲線圖。(a) 一般固溶熱處理 後進行T6處理、(b)過高溫固溶處理溫度為560 oC後進行 T4T6處理 28 圖3-3 6066鋁合金擠型板材之DSC曲線圖 29 圖3-4 (a) 拉伸試片取樣示意圖;(b) 拉伸試片尺寸示意圖 30 圖4-1 530-N6材之OM金相圖 44 圖4-2 (a) 530-N6材之SEM圖(BEI)與(b)、(c)、(d)第二相EDS分析 45 圖4-3 530-N6材之X光繞射圖譜 46 圖4-4 560-H9材之OM金相圖 47 圖4-5 (a) 560-H9材之SEM圖(BEI)與(b)、(c)、(d)、(e)第二相EDS 分析 48 圖4-6 H6材與H9材之X光繞射圖譜 49 圖4-7 H6材之OM金相圖:(a) 550 oC、(b) 560 oC、(c) 580 oC 50 圖4-8 H6材之SEM圖(BEI):(a) 550 oC、(b) 560 oC、(c) 580 oC 51 圖4-9 530-N6材與H材之拉伸性質比較:(a) YS與UTS、 (b) UE與TE 52 圖4-10 (a) 530-N6材、(b)560-H9材、(c)560-H6材之拉伸 破斷面情形 53 圖4-11 530-N6材、560-H6材與560-H9材之(a)拉伸曲線、 (b)拉伸韌性 54 圖4-12 530-N6材與H材之YS數據值分布情形 十字符號為YS特徵值(R=36.8%) 55 圖4-13 (a) 530-N6材、(b) 560-H9材、(c) 550-H6材、 (d) 560-H6材、(e) 580-H6材之降伏強度線性迴歸圖 56 圖4-14 530-N6材與H材YS之機率密度函數圖 57 圖4-15 530-N6材與H材YS之可靠度函數圖 58 圖4-16 530-N6材與H材其YS之降伏率圖 59 圖4-17 530-N6材與H材之TE數據值分布情形 十字符號為TE特徵值(R=36.8%) 60 圖4-18 (a) 530-N6材、(b) 560-H9材、(c) 550-H6材、 (d) 560-H6材、(e) 580-H6材之總延伸率線性迴歸圖 61 圖4-19 530-N6材與H材TE之機率密度函數圖 62 圖4-20 530-N6材與H材TE之可靠度函數圖 63 圖4-21 530-N6材與H材其TE之破斷率圖 64

    [1] R. Garrett, J. Lin and T. Dean, "An investigation of the effects of solution heat treatment on mechanical properties for AA 6xxx alloys: experimentation and modelling", International Journal of Plasticity, vol. 21, pp. 1640-1657, 2005.
    [2] G. Mrówka-Nowotnik, J. Sieniawski and A. Nowotnik, "Effect of heat treatment on tensile and fracture toughness properties of 6082 alloy", Journal of Achievements in Materials and Manufacturing Engineering, vol. 32, pp. 162-170, 2009.
    [3] 日本輕金屬學會委員,「鋁合金之組織與性質」,日本輕金屬學會, pp. 278-279,1991。
    [4] ASM, "Properties and Selection: Nonferrous Alloys and Special-Purpose Materials", 9 ed. vol. 2, pp. 118-119, ASM International, 1986.
    [5] J. E. Hatch, "Aluminum: Properties and Physical Metallurgy", vol. 1, p.50, ASM International, 1984.
    [6] L. Zhen, W. D. Fei, S. B. Kang and H. W. Kim, "Precipitation behaviour of Al-Mg-Si alloys with high silicon content", Journal of Materials Science, vol. 32, pp. 1895-1902, 1997.
    [7] E. Tan and B. Ögel, "Influence of Heat Treatment on the Mechanical Properties of AA6066 Alloy", Turkish Journal of Engineering & Environmental Sciences, vol. 31, pp. 53-60, 2007.
    [8] C. Ravi, "First-principles study of crystal structure and stability of Al-Mg-Si-(Cu) precipitates", Acta Materialia, vol. 52, pp. 4213-4227, 2004.
    [9] J. Man, L. Jing and S. G. Jie, "The effects of Cu addition on the microstructure and thermal stability of an Al–Mg–Si alloy", Journal of Alloys and Compounds, vol. 437, pp. 146-150, 2007.
    [10] G. Mrówka-Nowotnik and J. Sieniawski, "Influence of heat treatment on the microstructure and mechanical properties of 6005 and 6082 aluminium alloys", Journal of Materials Processing Technology, vol. 162-163, pp. 367-372, 2005.
    [11] R.C. Dorward and C. Bouvier, "A rationalization of factors affecting strength, ductility and toughness of AA6061-type Al–Mg–Si–(Cu) alloys", Materials Science and Engineering A, vol. 254, pp. 33-44, 1999.
    [12] N. C. W. Kuijpers, F. J. Vermolen, C. Vuik, P. T. G. Koenis, K. E. Nilsen and S. ver der Zwaag, "The dependence of the β-AlFeSi to α-Al(FeMn)Si transformation kinetics in Al–Mg–Si alloys on the alloying elements", Materials Science and Engineering: A, vol. 394, pp. 9-19, 2005.
    [13] S. Zajac, B. Bengtsson and C. Jönsson, "Influence of Cooling after Homogenisation and Reheating to Extrusion on Extrudability and Final Properties of AA 6063 and AA6082 Alloys", Materials Science Forum, vol. 396-402, pp. 399-404, 2001.
    [14] G. Sha, K. O'Reilly, B. Cantor, J. Worth and R. Hamerton "Growth related metastable phase selection in a 6xxx series wrought Al alloy", Materials Science and Engineering, vol. 304-306, pp. 612-616, 2001.
    [15] D. E. Laughlin and W. F. Miao, "The Effects of cu and Mn Content and Processing on Precipitation Hardenting Behavior in Al-Mg-Si-Cu Alloy 6022", The Mineral, Metals & Materials Society, pp. 63-78, 1998.
    [16] K. Chen, H. Liu, Z. Zhang, S. Li and R. I. Todd, "The improvement of constituent dissolution and mechanical properties of 7055 aluminum alloy by stepped heat treatments", Journal of Materials Processing Technology, vol. 142, pp. 190-196, 2003.
    [17] M. A. Azmah Hanim, S. Chang Chung and O. Khang Chuan, "Effect of a two-step solution heat treatment on the microstructure and mechanical properties of 332 aluminium silicon cast alloy", Materials & Design, vol. 32, pp. 2334-2338, 2011.
    [18] 萊希納、貝爾契編,吳振環主譯,「機械產品的可靠性」,機械工業出版,1994。
    [19] K. C. Sons, "Reliability in engineering design", John Wiley & Sons, 1977.
    [20] E. T. Lee and J. Wang, "Statistical Methods for Survival Data Analysis", 3 ed., John Wiley & Sons, 2003.
    [21] 彭鴻霖,「可靠度技術手冊-可靠度機率理論」,國家太空計畫室,2000。
    [22] 彭鴻霖,「可靠度技術手冊-韋伯分佈可靠度評估技術」,國家太空計畫室, 2000。
    [24] 信賴性管理便覽編輯委員會,「品質保證之信賴性管理便覽」,日本規格協會,1985。
    [25] A. D. S. Cater, "Mechanical reliability" , Chap. 2 and 11, 2nd edition, 1986, Mechanical reliability, 2 ed., John Wiley & Sons, 1986.
    [26] B. Faucher and W. R. Tyson, "On the Determination of Weibull parameters", Journal of Materials Science Letters, pp. 1199-1203, 1988.
    [27] P. D. T. O'Connor, "Practical reliability engineering", 3 ed., John Wiley & Sons, 1991.
    [28] S. H. Dai and M. O. Wang, "Reliability analysis in engineering applications", Van Nostrand Reinhold, pp. 353-358, 1992.
    [29] 真壁肇編,陳耀茂譯,「可靠性工程入門:中華民國品質管制學會」,1989。
    [30] X. D. Li and L. Edwards, "Theoretical Modeling of fatigue threshold for aluminum alloys", Engineering Fracture Mechanics, vol. 20, pp. 35-48, 1996.
    [31] H. Qiao and C. P. Tsokos, "Estimation of the three parameter Weibull probability distribution", Mathematics and Computers in Simulation, vol. 39, pp. 173-185, 1995.
    [32] A. Ghosh, "A fortran program for fitting Weibull distribution and generating samples", Computers and Geosciences, vol. 25, pp. 729-738, 1999.
    [33] D. Wu, J. Zhou and Y. Li, "Unbiased estimation of Weibull parameters with the linear regression method", Journal of the European Ceramics Society, pp. 1099-1105, 2006.
    [34] R. Kaibyshev, F. Musin, D. Gromov, T. G. Nieh and D. R. Lesuer, "Effect of Cu and Zr Additions on the Superplastic Behavior of 6061 Aluminum Alloy", Materials Transactions, vol. 43, pp. 2392-2399, 2002
    [35] 程文宗,「Al-Mg-Si鋁合金拉伸性質與可靠度之固溶化處理效應」,第五章,國立成功大學,2010。
    [36] E. TAN, "The Effect of Hot-deformation on Mechanical Properties and Age Hardening Characteristics of Al-Mg-Si Based Wrought Aluminum Alloys", Natural and Applied Sciences of Middle East Technical University, Chap. 2, 2006.
    [37] Y. L. Liu, S. B. Kang and H.W. Kim, "The complex microstructures in As-Cast Al- Mg-Si Alloy", Materials Letters, vol. 41, pp. 267-272, 1999.

    下載圖示 校內:2014-08-22公開
    校外:2014-08-22公開
    QR CODE