簡易檢索 / 詳目顯示

研究生: 吳柘松
Wu, Che-Sung
論文名稱: Mo6+和W6+陽離子摻雜對鉍釤鈦薄膜鐵電性質之影響
Effects of Mo6+ and W6+ doping on the Ferroelectric properties of (Bi,Sm)4Ti3O12 Films
指導教授: 林文台
Lin, Wen-Tai
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 79
中文關鍵詞: 鐵電薄膜電滯曲線
外文關鍵詞: film, ferroelectric, hysteresis loop
相關次數: 點閱:59下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本實驗摻雜陽離子Sm3+,Mo6+和W6+於Bi4Ti3O12 (BTO)薄膜中,且以射頻濺鍍法生長於Pt/SiO2/Si(100)基板上,並探討所摻雜陽離子之含量對BST鐵電性質及微結構的影響。摻雜Sm於BTO薄膜中(BST),薄膜內陽離子的計量比為Bi:Sm:Ti=3.35-3.55:0.8-0.82:3時,展現出最大的殘餘極化量(2Pr)。在電場強度200kV/cm時2Pr為19 μC/cm2。在摻雜Mo於BST薄膜中(BSTMZ)以及摻雜W於BST薄膜中(BSTWZ),2Pr隨著摻雜的含量增加而增加,所摻雜的含量分別為z=0.005-0.03以及z=0.005-0.01;然而當所摻雜的含量大於0.03之後,2Pr有明顯的下降。這代表摻雜Mo和W將對BST薄膜的2Pr值造成兩種相反的效應(1)減少氧缺陷的數量(2)晶粒尺寸變小,結果就會改善或降低2Pr值。BSTWZ薄膜的2Pr及介電常數分別為21-8 μC/cm2及225-250,比BSTMZ薄膜小,這個結果或許可以被描述為W原子進入Pt/BSTWZ的界面以及Pt層內所導致。

      The doping effects of Sm3+, Mo6+, and W6+ as a function of the dopant concentration on the microstructures and ferroelectricity of sputter-deposited Bi4Ti3O12 (BTO) films on Pt/SiO2/Si(100) were studied. The Sm-doped BTO (BST) films with cation ratios of Bi:Sm:Ti = 3.35-3.55:0.8-0.82:3 showed the largest remnant polarization (2Pr) of 19 μC/cm2 at 200kV/cm. For the Mo-doped BST (BSTMZ) and W-doped BST (BSTWZ) films the 2Pr first increased with the Mo and W concentrations in the range of z = 0.005-0.03 and 0.005-0.01, respectively, and then decreased with the z larger than 0.03. Mo and W doping can induce two contrary effects on the 2Pr, i.e., reducing the amounts of oxygen vacancies and decreasing the grain size, which result in the improvement and degradation of 2Pr, respectively. The 2Pr and dielectric constant of BSTWZ films were in the ranges of 21-8 μC/cm2 at 200kV/cm and 225-250, respectively, both of which were somewhat smaller than those of BSTMZ films, correspondingly. These results may be ascribed to the diffusion of significant amount of W atoms into the Pt/BSTWZ interface and the Pt layer.

    本 文 目 錄 中文摘要…………………………………………………… Ⅰ 英文摘要…………………………………………………… Ⅱ 誌謝感言…………………………………………………… Ⅲ 本文目錄…………………………………………………… Ⅳ 表目錄……………………………………………………… Ⅵ 圖目錄……………………………………………………… Ⅵ 本 文 第一章 簡介…………………………………………………1 1. 電子記憶體………………………………………………1 2. 鐵電材料…………………………………………………2 3. 鉍係層狀之鐵電薄膜……………………………………3 第二章 基本理論……………………………………………5 1. 介電性質與極化…………………………………………5 2. 鐵電材料極化原理………………………………………6 3. 層狀鉍系鈣鈦礦結構……………………………………7 4. 脈衝極化(pulse polarization)及疲勞(fatigue)量測 原理……………………………………………………………8 5. RT66A電滯曲線量測原理…………………………………8 6. 電子槍蒸鍍………………………………………………9 7. 濺鍍法 - 射頻(RF)濺鍍(Radio-frequency sputtering)…………………………………………………9 8. 掠角X光繞射法(Grazing Incidence X-ray Diffraction, GID)…………………………………………11 9. 化學分析電子儀( electron spectroscopy for chemical analysis, ESCA )………………………………12 10. 拉塞福背向散射儀(Rutherford backscattering spectrometry, RBS)………………………………………13 11. 實驗研究背景及動機…………………………………14 第三章 實驗步驟與方法…………………………………16 1. 實驗流程圖………………………………………………16 2. 粉末配置與靶材燒結……………………………………17 3. 基板Pt/Ta/SiO2/Si製備………………………………18 4. BST、BSTM及BSTW的鐵電薄膜沉積……………………18 5. 上電極製作 (電子槍蒸鍍)……………………………18 6. 退火 (管形爐)…………………………………………18 7. 鐵電性質量測與分析……………………………………19 7-1. 結晶相鑑定 (XRD)……………………………………19 7-2. 成分分析 (RBS)………………………………………19 7-3. 薄膜厚度測定…………………………………………19 7-4. 電滯曲線、疲勞量測 (RT66A)………………………19 7-5. 漏電流量測 (I-V)……………………………………20 7-6. 觀察表面顯微組織 (掃描式電子顯微鏡 SEM)……20 7-7. 觀察薄膜內部結構 (穿透式電子顯微鏡 TEM)……20 7-8. 觀察薄膜的化學組成 (化學分析電子光譜儀 ESCA)…………………………………………………………20 7-9. 觀察薄膜的介電常數…………………………………20 第四章 結果與討論………………………………………21 1. 膜厚的測定………………………………………………21 2. 摻雜不同釤(Sm)含量對BST膜殘餘極化量(2Pr)的影響……………………………………………………………21 3. 摻雜不同Mo(z)含量對BSTMZ膜殘餘極化量(2Pr)的影響……………………………………………………………22 4. 摻雜不同W(z)含量對BSTWZ膜殘餘極化量(2Pr)的影響……………………………………………………………24 第五章 結論………………………………………………26 參考文獻……………………………………………………28

    參考文獻
    1. 毫微米通訊, 鐵電記憶體簡介,第五卷第四期33.鐵電記憶體簡介.
    2. 奈米通訊, 技術簡訊, 第九卷第四期 鐵電記憶體技術.
    3. 陳世明, 國立成功大學電機工程學系研究所碩士論文.中華民國九十二年.
    4. R. Ramesh, A. Inam, W. K. Chan, B. Wilkens, K. Myers, K. Remschnig, P. L. Hart, J. M. Taroscon, Science, Vol.251, 17 May 1991.
    5. S. Y. Wu, J. Appl. Phys. 50, 4314-4318 (1979).
    6. E. C. Subbarao, Phy. Rev. 122, 849(1961).
    7. G. C. Messenger, F. N. Coppage, IEEE Trans. Nucl. Sci. NS-35, 1461(1988).
    8. S. K. Dey, and R Znleeg, Ferroelectric, 108, 37(1990).
    9. C. A. Pazde. Araujo, L. D. Mcmillan, B. M. Melnick, J. D. Cucharo and J. F. Scott, Ferroelectrics, 104, 241(1990).
    10. K. Ramkumar, J. Lee, A. Safari, S. C. Danforth, Mat. Res. Soc. Symp. Proc. 200, 121(1990).
    11. 工業材料, 107期, 84年11月.
    12. D. Bondarant, and Fred Gnadinger “Ferroelectric, 1988 for non volatile Rams” IEEE Spectrum, V. 26. pp. 30-33, July 1989.
    13. J. F. Scott, “Ferroelectric memories a atatus report” present at Government Industry Review of Ferroelectric memories Sept 14-15, 1998.
    14. K. Aoki, Y. Fukuda, and A. Nishimura, J. Appl. Phys. 32(1993), 4147.
    15. J. F. Chang, and S. B. Desu, J. Mater. Res. 9(1994), 915.
    16. C. A. Araujo, et al. “Fatigue-free ferroelectric capacitors with platinum electrodes.” Nature 374, 627-629(1995).
    17. Chia-Liang Sun and San-Yuan Chen, Journal of The Electrochemical Society, 150(9)C600-C602 (2003).
    18. O. Auciello, & R. Ramesh, MRS Bull. 21, 31-36(1996).
    19. R. Dat, J. K. Lee, O. Auciello, A. I. Kingon, Appl. Phys. Lett, 67,572-574 (1995).
    20. R. Z. HOU, X. M. Chen and S. Y. Wu, Jpn. J. Appl. Phys. Vol. 42(2003) pp. 5169-5171.
    21. Jun Zhu, Xiao-Bing Chen, Wang-Ping Lu, Xiang-Yu Mao, and Rong Hui, Appl. Phys. Lett, 83, 1818-1820.
    22. S. E. Cummins, and L. E. Cross, Appl. Phys. Lett, 10, 14-16(1967).
    23. B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, J. Lee, and W. Jo, Nature 401, 682 (1999).
    24. B. H. Park, S. J. Hyun, S. D. Bu, T. W. Noh, J. Lee, H.-D. Kim, T. H. Kim, and W. Jo, Appl. Phys. Lett, 74, 1907-1909(1999).
    25. B. S. Kang, B. H. Park, S. D. Bu, S. H. Kang, and T. W. Noh, Appl. Phys. Lett, 75, 2644-2646(1999).
    26. J. K. Lee , C. H. Kim, H. S. Suh, K. S. Hong, Appl. Phys. Lett, 80,3593-3595(2002).
    27. M. S. Tomar, R. E. Melgarejo, A. Hidalgo, S. B. Mazumder and R. S. Katiyar, Appl. Phys. Lett, 83,341-343(2003).
    28. Naoki Sugita, Eisuke Tokumitsu, Minoru Osada and Masato Kakihana, Jpn. J. Appl. Phys. Vol. 42(2003) L944-L945.
    29. Yuji Noguchi, Masaru Miyayama, Appl. Phys. Lett, 78,1903-1905(2001).
    30. W. T. Lin, T. W. Chiu, H. H. Yu, J. L. Lin, M. S. Lin, J. Vac. Sci. Technol. A, 21, 787-791,2003.
    31. X. Wang and H. Ishiwara, Appl. Phys. Lett, 82,2479-2481(2003).
    32. Jong Kuk Kim, Sang Su Kim, Jinheung Kim, J. Mater. Res., 18,1884-1888 (2003).
    33. Wataru Sakamoto, Yu-Ki Mizutani, Naoya Iizawa, Toshinobu Yogo, Takashi Hayashi and Shin-ichi Hirano, Jpn. J. Appl. Phys., 42, L1384-L1386(2003).
    34. 李筱菁, 國立台北科技大學材料及資源工程系研究所碩士論文. 中華民國89年.
    35. 邱碧秀, “電子陶瓷材料”. 徐氏基金會. 中華民國77年.
    36. 陳皇鈞, “陶瓷材料概論”. 曉園. 中華民國77年.
    37. 楊鴻銘, 國立成功大學材料科學與工程研究所. 中華民國85年6月.
    38. B. Aurivillins. Ariki. Kemi. 1, 463, 499 (1949); Ibid. 2, 519 (1950).
    39. 林夢嫺, 國立成功大學材料科學與工程研究所碩士論文. 中華民國92年.
    40. 莊達仁 編著, “VLSI製造技術”, 高立圖書, 中華民國88年.
    41. 汪建民, ”材料分析”, 中華民國87年10月.
    42. R. W. Berry, P. M. Hall, M. T. Harris, “Thin Film Technology”. VAN NOSTRAND REINHOLD COMPANY.
    彭盛久, 先登出版社(局版台業字第0173號). 中華民國65年.
    43. 吳南均 編譯, “高等X光學”. 國立成功大學材料科學及工程學系(第二版).
    44. L. R. doolittle, Nucl. Instr. Meth. B9(1985) 334.
    45. R. D. Shannon, Acta Cryst. A32, 751 (1976).
    46. G. Arlt and N. A. Pertsev, J. Appl. Phys. 70, 2283-2289 (1991).
    47. Artit, G. & Robels, U. Integ. Ferroelect. 3, 247-254 (1993).
    48. I. S. Zheluder, Physics of crystalline ielectrics (Plenum, New York, 1971).
    49. Plessner, K. W. Proc. Phys., Soc. B69, 1261-1269 (1956).
    50. Scott. J. F. and Araujo, C. A. Science, 246, 1400-1405 (1989).
    51. H. M. Duiker, P. D. Beale, J. F. Scott, C. A. Paz de Araujo, B. M. Melnick, J. D. Cuchiaro, and L. D. McMillan, J. Appl. Phys. 68, 5783-5789 (1990).
    52. Postnikov, V. S. Pavlov, V. S. Gvidnev, S. A. &Turkor, S. K. Sov. Phys. Solid. St. 10, 1267-1270 (1968).
    53. R. Lohkämper, H. Neumann, and G. Arlt, J. Appl. Phys. 68, 4220-4224 (1990).
    54. I. K. Yoo, and S. B. Desu, Phys. Sol. (a)133.565 (1992).
    55. H. Funakubo, T. Watanabe, T. Kojima, T. Sakai, Y. Noguchi, M. Miyayama, M. Osada, M. Kakihana, K. Saito, Journal of Crystal Growth, 248(2003) 180-185.
    56. Di Wu, Aidong Li and Naiben Ming, Journal of Applied Physics, 95, 4275-4281(2004).
    57. Takashi Kojima, Tomohiro Sakai, Takayuki Watanabe, Hiroshi Funakubo, Keisuke Saito, Minoru Osada, Applied Physics Letters, 80, 2746-2748(2002).
    58. Hirofumi Matsuda, Sachiko Ito, Takashi Lijima, Applied Physics Letters, 83, 5023-5025(2003).
    59. Mio Yamada, Naoya Iizawa, Toshiaki Yamaguchi, Wataru Sakamoto, Koichi Kikuta, Toshinobu Yogo, Takashi Hayashi, Shin-ichi Hirano, Jpn. J. Appl. Phys., 42, 5222-5226(2003).
    60. Takashi Hayashi, Naoya Iizawa, Daichi Togawa, Mio Yamada, Wataru Sakamoto and Shin-ichi Hirano, Jpn. J. Appl. Phys., 42, 1660-1664(2003).
    61. Takayuki Watanabe, Takashi Kojima, Hiroshi Uchida, Isao Okada and Hiroshi Funakubo, Jpn. J. Appl. Phys., 43, No. 2B, L309-L311(2004).
    62. Takashi Kojima, Takayuki Watanabe, Hiroshi Funakubo, Keisuke Saito, Minoru Osada, Masato Kakihana, Journal of Applied Physics, 93, 1707-1712 (2003).
    63. Hiroshi Uchida, Hiroki Yoshikawa, Isao Okada, Hirofumi Matsuda, Takashi Iijima, Takayuki Watanabe, and Hiroshi Funakubo, Jpn. .J. Appl. Phys. Part 1, No.11B, 41, 6820-6824 (2002).
    64. D. Wu, A. D. Li, T. Yu, N. B. Ming, Applied Physics A 78, 95-99(2004).
    65. D. Dimos, H.N. Al-Shareef, W.L. Warren, and B. A. Tuttle, J. Appl. Phys.,80,1682-1687 (1996).
    66. S. B. Ren, C. J. Lu, J. S. Liu, H. M. Shen, and Y. N. Wang, Physical Review B, vol. 55, 3485-3489 (1996).
    67. Yuji Noguchi, Ichiro Miwa, Yu Goshima and Masaru Miyayama, Jpn. J. Appl. Phys. 39, L1259-L1262 (2000).
    68. Jin Soo Kim, Sang Su Kim, Jong Kuk Kim and Tae Kwon Song, Jpn. J. Appl. Phys. .41, 6451-6454 (2001).
    69. H. N. Lee, D, Hesse, N. Zakharov, U. Gosele, SCIENCE 296,2006 (2002).
    70. Y. M.Sun, Y. C. Chen, J. Y. Gan, J. C. Hwang, Jpn. J. Appl. Phys. 41,892 (2002).
    71. H. N. Lee, D. Hesse, Appl. Phys. Lett., 80, 1040-1042(2002).
    72. X. Du and I.W. Chen, J. Am. Ceram. Soc., 81 3253 (1998).
    73. Y. Shimakawa, Y. Kubo, Y. Tauchi, H. Asano, T. Kamiyama, F. Izumi, and Z. Hiroi, Appl. Phys. Lett., 79, 2791(2001).
    74. A. D. Rae, J. G. Thompson, and R. L. Withers, Acta Crystallogr., Sect. B: Struct. Sci. 48, 418 (1992).
    75. Y. Noguchi, M. Miyayama, and T. Kudo, Phys. Rev. B 63,214102 (2001).
    76. Y. Shimakawa, Y. Tauchi, H. Asano, T. Kamiyama, F. Izumi, and Z. Hiroi, Appl. Phys. Lett. 79, 2791 (2001).
    77. Di Wu, Aidong Li and Tao Zhu, Zhiguo Liu and Naiben Ming, Journal of Applied Physics, 88, 5941-5945(2004).
    78. Y. Y. Yao, C. H. Song, P. Bao, D. Su, X. M. Lu, J. S. Zhu, Y. N. Wang, J. Appl. Phys.,95,3126-3130 (2004).

    下載圖示 校內:2006-07-13公開
    校外:2006-07-13公開
    QR CODE