| 研究生: |
王逸雯 Wang, Yi-Wen |
|---|---|
| 論文名稱: |
應用於遙測影像之兩階段影像融合演算法 A Two-Phase Pansharpening Algorithm for Remote Sensing Imagery |
| 指導教授: |
戴顯權
Tai, Shen-Chuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 衛星影像融合 、影像融合 、超解析 、多變量線性迴歸 |
| 外文關鍵詞: | pansharpening, image fusion, super-resolution, multiple linear regression |
| 相關次數: | 點閱:102 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
衛星影像融合技術目的是將高頻譜解析度的多頻譜影像與高空間解析度的全色域影像融合為一張高空間解析度並且高頻譜解析度的影像。在本論文中,我們提出一個兩階段式的衛星影像融合(也稱作全色態銳化)演算法,首先,將超解析技術應用於多光譜影像上,利用多光譜影像之間的關係性以及多光譜影像與全色域影像之間的結構關聯性,提高多光譜影像的解析度。接著,基於Intensity-Hue-Saturation的衛星影像融合方法,利用多元線性回歸計算出多光譜影像的強度部分,並且根據全色域影像的邊緣,使用全色域影像取代多光譜影像的強度部分,因此在地表平滑部分,如水池、建物屋頂等等,可避免加入過多的細節以及雜訊。由實驗結果顯示,本研究所提出的方式確實能增進影像的視覺品質並且減少不自然的現象。
Pansharpening is the technique that fuses high spectral resolution multispectral (MS) images and a high spatial resolution panchromatic (PAN) image to create a high spatial and high spectral resolution fused image. In this Thesis, a two-phase pansharpening algorithm is proposed. First, the spatial resolution of MS images is up-scaled by super-resolution technique with the relationship between the PAN and MS images. Second, the algorithm based on the Intensity-Hue-Saturation method, and the intensity component is estimated by multiple linear regression between the PAN and MS images. The intensity component is replaced by the PAN image according to edge strength. Thus, the fused result can avoid injecting excessive details and noise in the flat area of land surface, such as pools and roofs. The experiment results show that the proposed algorithm achieves better visual quality and less artifact.
[1] L. Alparone, L. Wald, J. Chanussot, C. Thomas, P. Gamba, and L. M. Bruce, “Comparison of Pansharpening Algorithms: Outcome of the 2006 GRS-S Data Fusion Contest,” Geoscience and Remote Sensing, IEEE Transactions on, vol. 45, no. 10, pp. 3012 – 3021, oct 2007.
[2] L. Alparone, S. Baronti, B. Aiazzi, and A. Garzelli, “Spatial Methods for Multispectral Pansharpening: Multiresolution Analysis Demystified,” Geoscience and Remote Sensing, IEEE Transactions on, vol. 54, no. 5, pp. 2563 – 2576, may 2016.
[3] T. M. Tu, S. C. Su, H. C. Shyu, and P. S. Huang, “A new look at IHS-like image fusion methods,” Information Fusion, vol. 2, issue 3, pp 177 – 186, sep 2001.
[4] J. Nuñez, X. Otazu, O. Fors, A. Prades, V. Pala, and R. Arbiol, “Multiresolution-based image fusion with additive wavelet decomposition,” Geoscience and Remote Sensing, IEEE Transactions on, vol. 37, no. 3, pp. 1204 – 1211, may 1999.
[5] X. Otazu, M. González-Audícana, O. Fors, and J. Núñez, “Introduction of Sensor Spectral Response Into Image Fusion Methods. Application to Wavelet-Based Methods,” Geoscience and Remote Sensing, IEEE Transactions on, vol. 43, no. 10, pp. 2376 – 2385, oct 2005.
[6] S. Rahmani, M. Strait, D. Merkurjev, M. Moeller and T. Wittman, “An adaptive IHS pan-sharpening method,” Geoscience and Remote Sensing, IEEE Transactions on, vol. 7, no. 4, pp. 746 – 750, oct 2010.
[7] T. M. Kuo, S. C. Tai, “On designing efficient super resolution algorithms by regression models,” Journal of Electronic Imaging, vol. 22, no. 3, pp. 033002-1 – 033002-17, jul 2013.
[8] G. Vivone, L. Alparone, J. Chanussot, M. Dalla Mura, A. Garzelli, G. Licciardi Restaino and L. Wald, “A Critical Comparison Among Pansharpening Algorithms,” Geoscience and Remote Sensing, IEEE Transactions on, vol. 53, no. 5, pp. 2565 – 2586, may 2015.
[9] T.-M. Tu, P. S. Huang, C.-L. Hung, and C.-P. Chang, “A fast intensityhue-saturation fusion technique with spectral adjustment for ikonos imagery,” Geoscience and Remote Sensing Letters, IEEE, vol. 1, no. 4, pp. 309 – 312, oct 2004.
[10] L. Yee, L. Junmin, and Z. Jiangshe, “An Improved Adaptive Intensity Hue-Saturation Method for the Fusion of Remote Sensing Images, ” Geoscience and Remote Sensing Letters, IEEE, vol. 2, pp. 985 – 989, may 2014.
[11] Y Song,W. Wu, Z. Liu, X. Yang, K. Liu, and W. Lu, “An Adaptive Pansharpening Method by Using Weighted Least Squares Filter,” Geoscience and Remote Sensing Letters, IEEE, vol. 13, no. 1, pp.18 – 22, jan 2016.
[12] Haiqiao Zhang, Mei Li, and Guoliang Chen, “Remote Sensing Image Fusion Method Based on Generalized IRS Transform,” Computer Science and Network Technology (ICCSNT), 2011 International Conference on, pp. 2141 – 2145, dec 2011.
[13] Y. Kim , C. Lee , D. Han , Y. Kim and Y. Kim, “Improved additive-wavelet image fusion,” Geoscience and Remote Sensing Letters, IEEE, vol. 8, no. 2, pp. 263 – 267, mar 2011.
[14] S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image reconstruction: a technical overview,” Signal Processing Magazine, IEEE, vol. 20, no. 3, pp. 21 – 36, may 2003.
[15] H. Hou and H. Andrews, “Cubic splines for image interpolation and digital filtering,” Acoustics, Speech, and Signal Processing, IEEE Transactions on, vol. 26, no. 6, pp. 508 – 517, dec 1978.
[16] R. G. Keys, “Cubic convolution interpolation for digital image processing,” Acoustics, Speech, and Signal Processing, IEEE Transactions, vo1.29, pp.1153 – 1160, 1981.
[17] C. E. Duchon, “Lanczos fltering in one and two dimensions,” Journal of Applied Meteorology and Climatology, vol. 18, no. 8, pp. 1016 – 1022, aug. 1979.
[18] G. Mu, X. Gao, K. Zhang, X. Li, and D. Tao, “Single image super resolution with high resolution dictionary,” Image Processing (ICIP), 2011 18th IEEE International Conference on, pp. 1141 – 1144, sep 2011.
[19] M. V. Jignasha and C. N. Paunwala, “Learning based single frame super-resolution using lorentzian error norm amp; gabor filter,” Signal Processing, Computing and Control (ISPCC), 2013 IEEE International Conference on, pp. 1 – 6, sep 2013.
[20] I. Tosic and P. Frossard, “Dictionary learning,” Signal Processing Magazine, IEEE, vol. 28, no. 2, pp. 27 – 38, mar 2011.
[21] S. C. Tai, T. M. Kuo, and K. H. Li , “An Efficient Super Resolution Algorithm Using Simple Linear Regression,” Robot, Vision and Signal Processing, 2013 Second International Conference on, pp. 287 – 290, dec 2013.
[22] N.Kanopoulos, N.Vasanthavada, and R.Baker, “Design of an image edge detection filter using the sobel operator,” Solid-State Circuits, IEEE Journal of, vol.23, no.2, pp.358 – 367, apr 1988.
[23] X. Wu and L. Guan, “Acceleration of the LBG algorithm,” Communications, IEEE Transactions on, vol. 42, pp. 1518 – 1523, feb 1994.
[24] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” Image Processing, IEEE Transactions on, vol. 13, no. 4, pp. 600 – 612, apr 2004.
[25] C. Pohl, “Geometric aspects of multisensor image fusion for topographic map updating in the humid tropics,” Int. Inst. Aerospace Surv. Earth Sci., Enschede, The Netherlands, ITC Pub. 39, 1996.
[26] Coloma Ballester, Vicent Caselles, Laura Igual, Joan Verdera, and Bernard Roug´e, “A variational model for p+xs image fusion,” International Journal of Computer Vision, vol. 69, no. 1, pp. 43 – 58, aug 2006.
[27] X. Kang, S. Li and J. Benediktsson, “Pansharpening with matting model,” Geoscience and Remote Sensing, IEEE Transactions on, vol. 52, no. 8, pp. 5088 – 5099, aug 2014.
[28] L. Zhang, L. Zhang, D. Tao, and X. Huang, “On combining multiple features for hyperspectral remote sensing image classification,” Geoscience and Remote Sensing, IEEE Transactions on, vol. 50, no. 3, pp. 879 – 893, mar 2012.
[29] M. Choi, “A new intensity–hue–saturation fusion approach to image fusion with a tradeoff parameter,” Geoscience and Remote Sensing, IEEE Transactions on, vol. 44, no. 6, pp. 1672 – 1682, jun 2006.
[30] L. Alparone, B. Aiazzi, S. Baronti, A. Garzelli, F. Nencini, and M. Selva, “Multispectral and panchromatic data fusion assessment without reference,” Photogrammetric Engineering & Remote Sensing, vol. 74, no. 2, pp. 193 – 200, feb 2008.