| 研究生: |
周幸妃 Chou, Hsing-Fei |
|---|---|
| 論文名稱: |
以有機前導物法製備鋅鐵氧化物粉末之探討 |
| 指導教授: |
申永輝
Shen, Yong-Huei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 前導物 |
| 外文關鍵詞: | precursor |
| 相關次數: | 點閱:70 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗以有機前導物法製備鋅鐵氧化物粉末,參考Pechini製程之檸檬酸凝膠法,探討改質Pechini製程(即有機前導物法)中主要操作變數,並以簡化製程為目的。
有機前導物法是以高量螯合劑與溶劑之使用條件與添加氨水為製備過程中的操作條件,本研究主要以三階段的製備流程作為探討,第一階段探討添加氨水與否對製備鋅鐵氧化物粉末之影響。第二階段探討在不同莫耳比例的金屬離子-螯合劑-溶劑之配製條件下對合成鋅鐵氧化物粉末之效果。第三階段探討在改良後的製程條件下合成多成分金屬氧化物粉末之可行性。並以觀察凝膠形成的情形,隨後再將經煆燒後所得到的氧化物粉末透過XRD作結晶相鑑定及利用TEM觀察顯微粒徑分佈。
研究結果發現以低螯合劑與溶劑之使用量與沒有添加氨水直接以加熱方式的條件下,可得到均質的起始溶液,並縮短凝膠的形成時間,可在低溫煆燒下合成出單一結晶相與呈現規則球形的鋅鐵氧化物粉末(ZnFe2O4)、銅鋅鐵氧化物粉末(Cu0.5Zn0.5Fe2O)和銅鐵鎳鋅氧化物粉末(Cu0.4Fe1.6Ni0.65Zn0.35O4)。
In the study zinc iron oxide powders were prepared by the organic precursor method based on the Pechini-type reaction route. Specifically, the possibility of modifying the Pechini method and designing a better process route is discussed.
Traditionally organic precursor method use a high chelating agent and solvent content and the addition of NH4OH solution to prepare precursor solution. This study discusses by three stage of experimental process. First stage studies the effect of NH4OH solution addition on the preparation zinc iron oxide powders. Second stage studies the effect of different mole ratios metal ions-chelating agent-solvent content synthesis of zinc iron oxide powders. The third stage applied the modified method to the synthesis of multi-component oxides. The experimental analysis include the observation of gelation processes and the crystalline phase that of the determination calcined powders by XRD and the determination of particle distribution by TEM.
The experimental results indicated that low chelating agent and solvent content and direct heating without the addition of NH4OH solution. Produces homogeneous precursor solution. These homogeneous precursor solution lead to shorter gelation time and the formation of single crystalline phase and spherical shape zinc iron oxide、copper zinc iron oxide、copper iron nickel zinc oxide powders at the low-temperature.
1. Pechini, M. P., “Barium Titanium Citrate, Barium Titanate and Processes for Producing Same”, U. S. Pat., No.3 231 328, Jan. 25(1966).
2. Pechini, M. P., “Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coating Method Using the Same to Form a Capacitor”, U. S. Pat., No.3 330 697, Jul. 11(1967).
3. Sato, T., K. Haneda, M. Seki and T. Iijima, “Morphology and magnetic properties of ultrafine ZnFe2O4 particles”, Appl. Phys. A, 50, pp.13-16(1990).
4. Li, X., G. Lu and S. Li, “Synthesis and characterization of fine particle ZnFe2O4 powders by a low temperature method”, J. Alloys and Comp., 235, pp.150-155(1996).
5. Yuan, Z. H. and L. D. Zhang, “Synthesis, characterization and photocatalytic activity of ZnFe2O4/TiO2 nanocomposite”, J. Mater. Chem., 11, pp.1265-1268(2001).
6. Ahmed, M. A., L. Alonso, J. M. Palacios, C. Cilleruelo and J. C. Abanades, “Structural changes in zinc ferrites as regenerable sorbents for hot coal gas desulfurization”, Solid State Ionics, 138, pp.51-56(2000).
7. Paul A. Lessing, “Mixed-Cation Oxide Powders via Polymeric Precursors”, Am. Ceram. Soc. Bull., 68(5), pp.1002-1007(1989).
8. Chen T-M and L-F Lin, “Chemical Synthesis and Characterization of Superconducting YBa2Cu4O8 at Ambient Pressure”,J. Chin. Chem. Soc., 41(6), pp.735-739(1994).
9. Saha, S. K., A. Pathak and P. Pramanik, “Low-Temperature Preparation of Fine Particles of Mixed Oxide Systems”, J. Mater. Sci. Lett., 14, pp. 35-37(1995).
10. Gajbhiye, N. S. and U. Bhattacharya, V. S. Darshane, “Thermal Decomposition of Znic-Iron Citrate Precursor”, Thermochim. Acta, 264, pp. 219-230(1995).
11. Hamdeh, H. H., J. C. Ho, S. A. Oliver, R. J. Willey, J. Kramer, Y. Y. Chen, S.H. Lin, Y. D. Yao, M. Daturi and G. Busca, “Ferrimagnetic Zinc Ferrite Fine Powders”, IEEE Trans. Magn., 31(6), pp.3808-3810(1995).
12. Kakihana, M., M. Milanova, M. Arima, T. Okubo, M. Yashima and M. Yoshimura, “Polymerized Complex Route to Synthesis of Pure Y2Ti2O7 at 750℃ Using Yttrium-Titanium Mixed-Metal Citric Acid Complex”, J. Am. Ceram. Soc., 79
(6), pp.1673-76(1996).
13. Arima, M., M. Kakihana, Y. Nakamura, M. Yashima and M. Yoshimura, “Polymerized Complex Route to Barium Titanate Powders Using Barium-Titanium Mixed-Metal Citric Acid Complex”, J. Am. Ceram. Soc., 79(11), pp.2847-56(1996).
14. Yue, Z., L. Li, J. Zhou, H. Zhang and Z. Gui, “Preparation and Characterization of NiCuZn Ferrite Nanocrystalline Powders by Auto-Combustion of Nitrate-Citrate Gels”, Materials Science and Engineering, B64, pp. 68-72(1999).
15. Kakihana, M., “Sol-Gel Preparation of High Temperature Superconducting Oxides”, J. Sol-Gel Sci. Tech., 6, pp. 7-55(1996).
16. Park, H. B., H. J. Kweon, Y. S. Hong, S. J. Kim and K. Kim, “Preparation of La1-xSrxMnO3 Powder by Combustion of Poly(ethylene glycol)-Metal Nitrate Gel Precursors”, Journal of Materials Science, 32, pp. 57-65(1997).
17. Barsoum, M. W., Fundamentals of Ceramics, pp. 71-73, The McGraw-Hill Companies, New York(1997).
18. Yebin, X., “Preparation of Ba6-3xNd8+2xTi18O54 via Ethylenediaminetetraacetic Acid Precursor”, J. Am. Ceram. Soc., 83(11), pp.2893-95(2000).
19. Yebin, X. and Y. He, “Synthesis of Ba2Ti9O20 via Ethylenediaminetetraacetic Acid Precursor”, J. Mater. Res., 16(4), pp.1195-1199(2001).
20. Yebin, X. and Y. He, “Polymeric precursor synthesis of Ba6-3xSm8+2xTi18O54 ceramic powder”, Ceram. Int., 28(1), pp.75-78(2002).
21. Zhenxing, Y., X. Oi, X. Wang, J. Zhou, Z. Gui and L. Li, “Low-Temperature Sintered Ni-Zn Manganite NTC Ceramics Prepared by a Gel Auto-Combustion Method”, J. Mater. Sci. Lett., 21, pp. 375-377(2002).
22. Shaw, D. J., BSc, PhD and FRSC, Introduction to Colloid and Surface Chemistry, Butterworth-Heinemann Ltd, London(1991).
23. 黃怡禎譯,礦物學,地球科學文教基金會,台北(2000)。
24. Tai, L. W. and P. A. Lessing, “Modified resin-intermediate processing of perovskite powders: Part Ι. Optimization of polymeric precursors”, J. Mater. Res., 7(2), pp.502-510(1992).
25. Tai, L. W. and P. A. Lessing, “Modified resin-intermediate processing of perovskite powders: Part ΙI. Processing for fine , nonagglomerated Sr-doped lanthanum chromite powders”, J. Mater. Res., 7(2), pp.511-519(1992).
26. 余樹楨,晶體之結構與性質,渤海堂文化公司,台北(1989)。
27. 顏富士、陳燕銘、向性一,“水熱法合成PLZT單晶粉末礦物相及成分之關係”,礦冶,37:4(1993)。
28. 蔡命運,“鐵氧磁體在感溫元件上之用途”,粉末冶金會刊,18(1),pp. 54-56(1993)。
29. 許文程,“含螯合型還原劑之氧化還原起始劑於水相聚合反應之研究”,國立成功大學化學工程研究所博士論文,(1993)。
30. 郭有福、曾俊元,“PLZT薄膜之溶膠-凝膠製程之研究”,陶業,13:3, pp.79-86(1994)。
31. 楊建民, “藉酒石酸鹽在低溫合成鎳鐵氧磁體粉末”,國立成功大學資源工程所碩士論文,(1996)。
32. 沈力陽,合成化學(上),文京圖書有限公司,台北(1996)。
33. 趙承琛,界面科學基礎,復文書局,台南市(1998)。
34. 蔡政達,“利用FT-IR和13C-NMR光譜探討檸檬酸製程合成鈦酸鋇陶瓷粉末之研究”,國立成功大學材料科學及工程研究所博士論文,(1999)。
35. 蔡政達、方滄澤,“利用檸檬酸製程合成鈦酸鋇陶瓷粉末”,化工,46:5 (1999)。
36. 蔣孝澈,“溶凝膠製作與應用專輯”,化工,46(5),pp.12-15(1999)。
37. 卓宛君,“以酒石酸鹽法合成奈米微粒Li-Ferrite之機制探討”,國立成功大學資源工程研究所碩士論文,(2000)。
38. 高小娟,“反應後溶液pH調整對酒石酸鹽法合成Li-Ferrite之熱反應特性分析”,國立成功大學資源工程研究所碩士論文,(2001)
39. 楊建民,“以酒石酸鹽法低溫(<500℃)合成超微粒鋅鐵氧磁體粉末之反應生成機構研究”,國立成功大學資源工程研究所博士論文,(2001)。
40. 張有義、郭蘭生編譯,膠體及界面化學入門,高立圖書有限公司,台北(2001)。
41. 陳永志、陳姿秀,“溶膠-凝膠法之應用與發展現況”,工業材料雜誌-光電特刊,183,pp. 115-126(2002)。
42. 馬振基、江金龍、關旭強、吳岱霖、張文吉,“溶凝膠型奈米複合材料之研發與應用”,工業材料雜誌-材料奈米技術專刊,185,pp. 142-149(2002)。
43. 何詠碩、黃惠暖、顏文進、王順賢、翁敏航,“溶膠-凝膠法製備鈦酸鋯特性之探討”,輔英科技大學應用化學系、國家奈米元件實驗室。
44. 鄭振東,實用磁性材料,全華圖書有限公司,台北(1998)。
45. 李俊義,分析化學,科技圖書股份有限公司,台北(1990)。
46. Cullity, B. D., Element of X-ray Diffraction-2nd, Addison-Wesley Inc., London(1978).
47. 黃啟祥、林文豪,“水熱法合成低溫燒結錳鋅鐵氧磁體粉末”,化工技術,9(9),pp.142-149(2001)。
48. Martell, A. E. and R. D. Hancock, Metal Complexes in Aqueous Solutions, Plenum Inc., New York(1996).
49. Brinker, C. J. and G. W. Scherer, Sol-Gel Science, Academic Inc., New York(1990).
50. 許樹恩、吳泰伯,X光繞射原理與材料結構分析,中國材料科學學會,台北(1993)。
51. 汪建民,陶瓷技術手冊(上),經濟部,台北(1994)。
52. Kumar, S. and G. L. Messing, “Synthesis of Barium Titanate by a Basic pH Pechini Process”, Mater. Res. Soc. Symp. Proc., 271, pp.95-100(1992).
53. Marcilly, C., P. Courty and B. Delmon, “Preparation of Highly Dispersed Mixed Oxides and Oxide Solid Solutions by Pyrolysis of Amorphous Organic Precursors”, J. Am. Ceram. Soc., 53(1), pp.56-57(1970).
54. Choy, J. H., Y. S. Han, S. H. Hwang, S. H. Byeon and G. Demazeau, “Citrate Route to Sn-Doped BaTi4O9 with Microwave Dielectric Properties”, J. Am. Ceram. Soc., 81(12), pp.3197-3204(1998).
55. 岡本祥一、近桂一郎,磁性陶瓷,復漢出版社,台南(1986)。
56. 李敏達譯,均衡溶液化學,國立編譯館出版,台北(1973)。
57. Chen, F. H., H. S. Koo and T. Y. Tseng, “Characteristics of the High-TC Superconducting Bi-Pb-Sr-Ca-Cu Oxides Derived from an Ethylenediaminetetraacetic Acid Precursor”, J. Am. Ceram. Soc., 75(1), pp.96-102(1992).
58. Hen, T. S., J. R. Chen and T. Y. Tseng, “Preparation of Bi0.7Pb0.3Sr1.0Ca1.0Cu1.8Oy High-TC Superconductor by the Citrate Method”, Jpn. J. Appl. Phys., 29, pp.650-655(1990).
59. Kakihana, M., M. Arima, M. Yashima, M. Yoshimura, Y. Nakamura, H. Mazaki and H.Yasuoka, “Polymerized Complex Route to the Synthesis of Multicomponent Oxides”, J. Sol-Gel Sci. Tech., 55, pp. 65-76(1994).