簡易檢索 / 詳目顯示

研究生: 林子華
Lin, Tzu-Hua
論文名稱: SARS 病毒ORF3 相關基因抑制蛋白質合成機制之探討
Inhibition of Protein Synthesis by ORF3 Related Genes of SARS Coronavirus
指導教授: 蕭璦莉
Shiau, Ai-Li
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 63
中文關鍵詞: 冠狀病毒嚴重急性呼吸道症候群
外文關鍵詞: SARS, coronavirus
相關次數: 點閱:48下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   嚴重急性呼吸道症候群(Severe acute respiratory syndrome, 簡稱SARS)是由一種新的冠狀病毒所引起的傳染性疾病。在SARS病毒的基因體當中的14個可能的開放讀碼區(Open reading frame, 簡稱ORF)當中,存在著許多具種別特異性的附屬蛋白。在這之中,ORF3基因被預測可以表現包括3a、3b以及SE三種蛋白,然而他們的表現對於病毒的生活史有何種意義至今仍然是不了解的。在本篇研究當中,我們建構了完整的ORF3基因序列,包括了3a、3b以及SE,並將其送入細胞內表現。實驗結果發現,ORF3基因的表現會全面性的抑制細胞內蛋白質的合成。接著,我們繼續研究ORF3基因所涵蓋的三個蛋白的表現,其個別對細胞所造成的影響。首先,我們發現3a蛋白會表現在細胞的內質網以及高基氏體上,並造成內質網緊迫(Stress)的生理反應,造成蛋白合成的抑制。而這樣的現象可能是由於3a蛋白形成了一個鈣離子通道,將內質網內儲存的鈣離子釋放所造成的結果。接著,我們發現3b蛋白的表現可能會造成細胞的死亡,因此破壞了細胞內正常的生理代謝。最後,SE蛋白則可能形成鈉離子的通道,造成細胞內產生一種高鈉濃度環境的緊迫進而抑制蛋白質的轉譯。總結而論,本篇研究發現,ORF3基因所表現的蛋白在病毒的生活史中以及對病毒毒力的影響上,可能扮演了相當重要的角色。

     A novel coronavirus has been identified as the etiologic agent of severe acute respiratory syndrome (SARS). Among the 14 potential open reading frames (ORFs) in its genome, several group-specific accessory proteins may be encoded. SARS coronavirus (SARS-CoV) ORF3 gene is a tricistronic ORF, which expresses 3a, 3b, and small envelope (SE) proteins. Though the 3a and SE proteins are known to be expressed during SARS-CoV infection, the role of these proteins in viral pathogenesis is still unknown. In the present study, we cloned the full-length ORF3 gene, including 3a, 3b, and SE, and transfected it into several lung epithelial cell lines. We found that expression of SARS-CoV ORF3 gene caused a general down-regulation of proteins synthesis. Next, we transfected three ORF3-encoded genes individually, and found that they used different mechanisms to shutdown cellular protein synthesis. First, 3a protein can localize to ER and Golgi apparatus and induced an ER stress response, possibly by forming calcium channel to release the ER-sequestrated calcium. Second, expression of 3b protein can lead to cell death, which may therefore shut-off cell metabolism. Finally, SE protein may be a potential “viroporin” and increase the intracellular sodium concentration, thus inhibiting protein translation by this “saline stress”. In conclusion, our findings suggest that these accessory molecules of SARS-CoV may play important roles during the virus life cycle and determinate viral virulence.

    Table of contents Abstract i 中文摘要 ii Table of Contents iii List of Figures vi List of Appendix viii Abbreviations ix Acknowledgement x Introduction 1 Severe Acute Respiratory Syndrome (SARS) 1 Coronavirus 2 SARS-CoV ORF3 3 The Interactions between Viral Protein and Host Cell 4 Regulation of Protein Synthesis in mRNA Translation 5 Aim of the Study 8 Materials and methods 9 Cell lines 9 Plasmids 9 Antibodies 10 Oligonucleotides 10 Plasmid constructions 12 Cells, transfections and luciferase assays 13 35S-Met protein synthesis assay 13 Cell apoptosis assay 14 RT-PCR. 14 3H-uridine transcriptional assay 15 35S-Met translational assay 15 Fluorescence microscopy. 15 Bioinformatic analysis of 3a and SE proteins 16 Western Blot Analysis 16 Fluorescence measurement of [Ca2+]C 17 Fluorescence measurement of [Na+]C 17 Results 18 Construction of SARS-CoV ORF3 gene expression vector. 18 Construction of SARS-CoV 3a, t3a, 3b, and SE proteins expression vectors 18 Construction of expression vectors encoding SARS-CoV 3a-, t3a-, 3b-, and SE-EGFP fusion proteins 18 Expression of ORF3 genes inhibited cellular protein synthesis 19 Expression of three predicted ORF3-encoded genes in the transfected A549 cells could be detected by RT-PCR 20 Expressions of 3a, 3b, and SE genes inhibited cellular protein synthesis at the translational level 20 The 3a-EGFP fusion protein was localized in Golgi apparatus and ER in the transfected CHO cells 21 The C-terminal region of 3a protein has a calcium pump-like domain 21 The t3a-EGFP fusion protein was localized in Golgi apparatus and ER in the transfected CHO cells 22 Expression of either 3a or t3a protein caused an increase in intracellular calcium concentration 22 Expression of both 3a & t3a proteins caused cellular ER stress response 22 Analysis of 3a protein predicted transmembrane α-helix structure revealed two hydrophilic appearances 23 Expression of the 3b protein induced cell death 23 The SE-EGFP fusion proteins had a disseminated distribution in the transfected CHO cells 24 Expression of the SE protein increased intracellular sodium concentration 24 Discussion 25 References 33 List of Figures Figure 1 Construction of SARS-CoV ORF3 expression vector 40 Figure 2 Modification of the mutation site on the ORF3 gene 41 Figure 3 Construction of SARS-CoV 3a, 3b, and SE expression vectors 42 Figure 4 Construction of truncated 3a expression vectors 43 Figure 5 Construction of SARS-CoV expression vectors encoding 3a-, 3b-, and SE-EGFP 44 Figure 6 Inhibition of promoter activities of IL-8 and CMV, as well as transcription activity of NF-κB and AP1, by ORF3 gene expression 45 Figure 7 The expression of SARS-CoV ORF3 gene inhibits the housekeeping reporter gene activities in various human and mouse cell lines 46 Figure 8 35[S]-Met protein synthesis assay 47 Figure 9 Detection of three predicted ORF3 encoded-genes in the transfected A549 cells by using RT-PCR 48 Figure 10 Expression of 3a, 3b, and SE genes inhibited the β-actin promoter activities in A549 cells 49 Figure 11 3[H]-uridine transcriptional assay 50 Figure 12 35[S]-Met translational assay 51 Figure 13 Determination of the cellular localization of 3a-EGFP fusion protein by florescence microscopy 52 Figure 14 Determination of the cellular localization of t3a-EGFP fusion protein by florescence microscopy 53 Figure 15 Detection of intracellular calcium concentration by Fura-3 florescence calcium indicator 54 Figure 16 Detection of 3a protein-induced ER stress signaling response by western blotting 55 Figure 17 The predicted transmembrane α-helix structure of 3a protein 56 Figure 18 Hypothetical model of 3a protein-induced ER stress response 57 Figure 19 Expression of the 3b protein induced cell death 58 Figure 20 Cellular localization of SE protein and the alteration of sodium concentration 59 Figure 21 Hypothetical model of SE protein-induced “saline stress” 60 List of Appendix Appendix 1 Position of ORF3 in the Genome of SARS-CoV 61 Appendix 2 Bioinformatic analysis of the amino acid sequence of the 3a protein 62 Appendix 3 Bioinformatic analysis of the amino acid sequence of the SE protein 63

    Arbely, E., Khattari, Z., Brotons, G., Akkawi, M., Salditt, T., and Arkin, I. T. (2004). A highly unusual palindromic transmembrane helical hairpin formed by SARS coronavirus E protein. J Mol Biol 341, 769-779.
    Breckenridge, D. G., Germain, M., Mathai, J. P., Nguyen, M., and Shore, G. C. (2003). Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene 22, 8608-8618.
    Brostrom, M. A., and Brostrom, C. O. (2003). Calcium dynamics and endoplasmic reticular function in the regulation of protein synthesis: implications for cell growth and adaptability. Cell Calcium 34, 345-363.
    Campanella, M., de Jong, A. S., Lanke, K. W., Melchers, W. J., Willems, P. H., Pinton, P., Rizzuto, R., and van Kuppeveld, F. J. (2004). The coxsackievirus 2B protein suppresses apoptotic host cell responses by manipulating intracellular Ca2+ homeostasis. J Biol Chem 279, 18440-18450.
    de Haan, C. A., Masters, P. S., Shen, X., Weiss, S., and Rottier, P. J. (2002). The group-specific murine coronavirus genes are not essential, but their deletion, by reverse genetics, is attenuating in the natural host. Virology 296, 177-189.
    Ding, Y., He, L., Zhang, Q., Huang, Z., Che, X., Hou, J., Wang, H., Shen, H., Qiu, L., Li, Z., et al. (2004). Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J Pathol 203, 622-630.
    Drosten, C., Gunther, S., Preiser, W., van der Werf, S., Brodt, H. R., Becker, S., Rabenau, H., Panning, M., Kolesnikova, L., Fouchier, R. A., et al. (2003). Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348, 1967-1976.
    Gonzalez, M. E., and Carrasco, L. (2003). Viroporins. FEBS Lett 552, 28-34.
    Herrewegh, A. A., Vennema, H., Horzinek, M. C., Rottier, P. J., and de Groot, R. J. (1995). The molecular genetics of feline coronaviruses: comparative sequence analysis of the ORF7a/7b transcription unit of different biotypes. Virology 212, 622-631.
    Hussain, S., Pan, J., Chen, Y., Yang, Y., Xu, J., Peng, Y., Wu, Y., Li, Z., Zhu, Y., Tien, P., and Guo, D. (2005). Identification of novel subgenomic RNAs and noncanonical transcription initiation signals of severe acute respiratory syndrome coronavirus. J Virol 79, 5288-5295.
    Ito, N., Mossel, E. C., Narayanan, K., Popov, V. L., Huang, C., Inoue, T., Peters, C. J., and Makino, S. (2005). Severe acute respiratory syndrome coronavirus 3a protein is a viral structural protein. J Virol 79, 3182-3186.
    Jordan, R., Wang, L., Graczyk, T. M., Block, T. M., and Romano, P. R. (2002). Replication of a cytopathic strain of bovine viral diarrhea virus activates PERK and induces endoplasmic reticulum stress-mediated apoptosis of MDBK cells. J Virol 76, 9588-9599.
    Kennedy, M., Boedeker, N., Gibbs, P., and Kania, S. (2001). Deletions in the 7a ORF of feline coronavirus associated with an epidemic of feline infectious peritonitis. Vet Microbiol 81, 227-234.
    Ksiazek, T. G., Erdman, D., Goldsmith, C. S., Zaki, S. R., Peret, T., Emery, S., Tong, S., Urbani, C., Comer, J. A., Lim, W., et al. (2003). A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348, 1953-1966.
    Law, P. T., Wong, C. H., Au, T. C., Chuck, C. P., Kong, S. K., Chan, P. K., To, K. F., Lo, A. W., Chan, J. Y., Suen, Y. K., et al. (2005). The 3a protein of severe acute respiratory syndrome-associated coronavirus induces apoptosis in Vero E6 cells. J Gen Virol 86, 1921-1930.
    Lee, Y., Sohn, W. J., Kim, D. S., and Kwon, H. J. (2004). NF-kappaB- and c-Jun-dependent regulation of human cytomegalovirus immediate-early gene enhancer/promoter in response to lipopolysaccharide and bacterial CpG-oligodeoxynucleotides in macrophage cell line RAW 264.7. Eur J Biochem 271, 1094-1105.
    Liao, Y., Lescar, J., Tam, J. P., and Liu, D. X. (2004). Expression of SARS-coronavirus envelope protein in Escherichia coli cells alters membrane permeability. Biochem Biophys Res Commun 325, 374-380.
    Liu, D. X., Cavanagh, D., Green, P., and Inglis, S. C. (1991). A polycistronic mRNA specified by the coronavirus infectious bronchitis virus. Virology 184, 531-544.
    Marra, M. A., Jones, S. J., Astell, C. R., Holt, R. A., Brooks-Wilson, A., Butterfield, Y. S., Khattra, J., Asano, J. K., Barber, S. A., Chan, S. Y., et al. (2003). The Genome sequence of the SARS-associated coronavirus. Science 300, 1399-1404.
    McGoldrick, A., Lowings, J. P., and Paton, D. J. (1999). Characterisation of a recent virulent transmissible gastroenteritis virus from Britain with a deleted ORF 3a. Arch Virol 144, 763-770.
    Mizzen, L., Macintyre, G., Wong, F., and Anderson, R. (1987). Translational regulation in mouse hepatitis virus infection is not mediated by altered intracellular ion concentrations. J Gen Virol 68, 2143-2151.
    Nal, B., Chan, C., Kien, F., Siu, L., Tse, J., Chu, K., Kam, J., Staropoli, I., Crescenzo-Chaigne, B., Escriou, N., et al. (2005). Differential maturation and subcellular localization of severe acute respiratory syndrome coronavirus surface proteins S, M and E. J Gen Virol 86, 1423-1434.
    Pavio, N., Romano, P. R., Graczyk, T. M., Feinstone, S. M., and Taylor, D. R. (2003). Protein synthesis and endoplasmic reticulum stress can be modulated by the hepatitis C virus envelope protein E2 through the eukaryotic initiation factor 2alpha kinase PERK. J Virol 77, 3578-3585.
    Peiris, J. S., Lai, S. T., Poon, L. L., Guan, Y., Yam, L. Y., Lim, W., Nicholls, J., Yee, W. K., Yan, W. W., Cheung, M. T., et al. (2003). Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361, 1319-1325.
    Poland, A. M., Vennema, H., Foley, J. E., and Pedersen, N. C. (1996). Two related strains of feline infectious peritonitis virus isolated from immunocompromised cats infected with a feline enteric coronavirus. J Clin Microbiol 34, 3180-3184.
    Qiu, M., Shi, Y., Guo, Z., Chen, Z., He, R., Chen, R., Zhou, D., Dai, E., Wang, X., Si, B., et al. (2005). Antibody responses to individual proteins of SARS coronavirus and their neutralization activities. Microbes Infect 7, 882-889.
    Rizzuto, R., Pinton, P., Ferrari, D., Chami, M., Szabadkai, G., Magalhaes, P. J., Di Virgilio, F., and Pozzan, T. (2003). Calcium and apoptosis: facts and hypotheses. Oncogene 22, 8619-8627.
    Rota, P. A., Oberste, M. S., Monroe, S. S., Nix, W. A., Campagnoli, R., Icenogle, J. P., Penaranda, S., Bankamp, B., Maher, K., Chen, M. H., et al. (2003). Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300, 1394-1399.
    Schneider, R. J., and Shenk, T. (1987). Impact of virus infection on host cell protein synthesis. Annu Rev Biochem 56, 317-332.
    Shen, S., Wen, Z. L., and Liu, D. X. (2003). Emergence of a coronavirus infectious bronchitis virus mutant with a truncated 3b gene: functional characterization of the 3b protein in pathogenesis and replication. Virology 311, 16-27.
    Tan, Y. J., Teng, E., Shen, S., Tan, T. H., Goh, P. Y., Fielding, B. C., Ooi, E. E., Tan, H. C., Lim, S. G., and Hong, W. (2004). A novel severe acute respiratory syndrome coronavirus protein, U274, is transported to the cell surface and undergoes endocytosis. J Virol 78, 6723-6734.
    Tan, Y. J., Fielding, B. C., Goh, P. Y., Shen, S., Tan, T. H., Lim, S. G., and Hong, W. (2004). Overexpression of 7a, a protein specifically encoded by the severe acute respiratory syndrome coronavirus, induces apoptosis via a caspase-dependent pathway. J Virol 78, 14043-14047.
    Thiel, V., Ivanov, K. A., Putics, A., Hertzig, T., Schelle, B., Bayer, S., Weissbrich, B., Snijder, E. J., Rabenau, H., Doerr, H. W., et al. (2003). Mechanisms and enzymes involved in SARS coronavirus genome expression. J Gen Virol 84, 2305-2315.
    van Kuppeveld, F. J., Hoenderop, J. G., Smeets, R. L., Willems, P. H., Dijkman, H. B., Galama, J. M., and Melchers, W. J. (1997). Coxsackievirus protein 2B modifies endoplasmic reticulum membrane and plasma membrane permeability and facilitates virus release. EMBO J 16, 3519-3532.
    van Kuppeveld, F. J., de Jong, A. S., Melchers, W. J., and Willems, P. H. (2005). Enterovirus protein 2B po(u)res out the calcium: a viral strategy to survive? Trends Microbiol 13, 41-44.
    Vaughn, E. M., Halbur, P. G., and Paul, P. S. (1995). Sequence comparison of porcine respiratory coronavirus isolates reveals heterogeneity in the S, 3, and 3-1 genes. J Virol 69, 3176-3184.
    Wilson, L., McKinlay, C., Gage, P., and Ewart, G. (2004). SARS coronavirus E protein forms cation-selective ion channels. Virology 330, 322-331.
    Yan, H., Xiao, G., Zhang, J., Hu, Y., Yuan, F., Cole, D. K., Zheng, C., and Gao, G. F. (2004). SARS coronavirus induces apoptosis in Vero E6 cells. J Med Virol 73, 323-331.
    Yeh, S. H., Wang, H. Y., Tsai, C. Y., Kao, C. L., Yang, J. Y., Liu, H. W., Su, I. J., Tsai, S. F., Chen, D. S., and Chen, P. J. (2004). Characterization of severe acute respiratory syndrome coronavirus genomes in Taiwan: molecular epidemiology and genome evolution. Proc Natl Acad Sci USA 101, 2542-2547.
    Yu, C. J., Chen, Y. C., Hsiao, C. H., Kuo, T. C., Chang, S. C., Lu, C. Y., Wei, W. C., Lee, C. H., Huang, L. M., Chang, M. F., et al. (2004). Identification of a novel protein 3a from severe acute respiratory syndrome coronavirus. FEBS Lett 565, 111-116.
    Yuan, X., Li, J., Shan, Y., Yang, Z., Zhao, Z., Chen, B., Yao, Z., Dong, B., Wang, S., Chen, J., and Cong, Y. (2005). Subcellular localization and membrane association of SARS-CoV 3a protein. Virus Res 109, 191-202.
    Zeng, R., Yang, R. F., Shi, M. D., Jiang, M. R., Xie, Y. H., Ruan, H. Q., Jiang, X. S., Shi, L., Zhou, H., Zhang, L., et al. (2004). Characterization of the 3a protein of SARS-associated coronavirus in infected vero E6 cells and SARS patients. J Mol Biol 341, 271-279.

    下載圖示 校內:2007-08-29公開
    校外:2007-08-29公開
    QR CODE