| 研究生: |
林子華 Lin, Tzu-Hua |
|---|---|
| 論文名稱: |
SARS 病毒ORF3 相關基因抑制蛋白質合成機制之探討 Inhibition of Protein Synthesis by ORF3 Related Genes of SARS Coronavirus |
| 指導教授: |
蕭璦莉
Shiau, Ai-Li |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 冠狀病毒 、嚴重急性呼吸道症候群 |
| 外文關鍵詞: | SARS, coronavirus |
| 相關次數: | 點閱:48 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
嚴重急性呼吸道症候群(Severe acute respiratory syndrome, 簡稱SARS)是由一種新的冠狀病毒所引起的傳染性疾病。在SARS病毒的基因體當中的14個可能的開放讀碼區(Open reading frame, 簡稱ORF)當中,存在著許多具種別特異性的附屬蛋白。在這之中,ORF3基因被預測可以表現包括3a、3b以及SE三種蛋白,然而他們的表現對於病毒的生活史有何種意義至今仍然是不了解的。在本篇研究當中,我們建構了完整的ORF3基因序列,包括了3a、3b以及SE,並將其送入細胞內表現。實驗結果發現,ORF3基因的表現會全面性的抑制細胞內蛋白質的合成。接著,我們繼續研究ORF3基因所涵蓋的三個蛋白的表現,其個別對細胞所造成的影響。首先,我們發現3a蛋白會表現在細胞的內質網以及高基氏體上,並造成內質網緊迫(Stress)的生理反應,造成蛋白合成的抑制。而這樣的現象可能是由於3a蛋白形成了一個鈣離子通道,將內質網內儲存的鈣離子釋放所造成的結果。接著,我們發現3b蛋白的表現可能會造成細胞的死亡,因此破壞了細胞內正常的生理代謝。最後,SE蛋白則可能形成鈉離子的通道,造成細胞內產生一種高鈉濃度環境的緊迫進而抑制蛋白質的轉譯。總結而論,本篇研究發現,ORF3基因所表現的蛋白在病毒的生活史中以及對病毒毒力的影響上,可能扮演了相當重要的角色。
A novel coronavirus has been identified as the etiologic agent of severe acute respiratory syndrome (SARS). Among the 14 potential open reading frames (ORFs) in its genome, several group-specific accessory proteins may be encoded. SARS coronavirus (SARS-CoV) ORF3 gene is a tricistronic ORF, which expresses 3a, 3b, and small envelope (SE) proteins. Though the 3a and SE proteins are known to be expressed during SARS-CoV infection, the role of these proteins in viral pathogenesis is still unknown. In the present study, we cloned the full-length ORF3 gene, including 3a, 3b, and SE, and transfected it into several lung epithelial cell lines. We found that expression of SARS-CoV ORF3 gene caused a general down-regulation of proteins synthesis. Next, we transfected three ORF3-encoded genes individually, and found that they used different mechanisms to shutdown cellular protein synthesis. First, 3a protein can localize to ER and Golgi apparatus and induced an ER stress response, possibly by forming calcium channel to release the ER-sequestrated calcium. Second, expression of 3b protein can lead to cell death, which may therefore shut-off cell metabolism. Finally, SE protein may be a potential “viroporin” and increase the intracellular sodium concentration, thus inhibiting protein translation by this “saline stress”. In conclusion, our findings suggest that these accessory molecules of SARS-CoV may play important roles during the virus life cycle and determinate viral virulence.
Arbely, E., Khattari, Z., Brotons, G., Akkawi, M., Salditt, T., and Arkin, I. T. (2004). A highly unusual palindromic transmembrane helical hairpin formed by SARS coronavirus E protein. J Mol Biol 341, 769-779.
Breckenridge, D. G., Germain, M., Mathai, J. P., Nguyen, M., and Shore, G. C. (2003). Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene 22, 8608-8618.
Brostrom, M. A., and Brostrom, C. O. (2003). Calcium dynamics and endoplasmic reticular function in the regulation of protein synthesis: implications for cell growth and adaptability. Cell Calcium 34, 345-363.
Campanella, M., de Jong, A. S., Lanke, K. W., Melchers, W. J., Willems, P. H., Pinton, P., Rizzuto, R., and van Kuppeveld, F. J. (2004). The coxsackievirus 2B protein suppresses apoptotic host cell responses by manipulating intracellular Ca2+ homeostasis. J Biol Chem 279, 18440-18450.
de Haan, C. A., Masters, P. S., Shen, X., Weiss, S., and Rottier, P. J. (2002). The group-specific murine coronavirus genes are not essential, but their deletion, by reverse genetics, is attenuating in the natural host. Virology 296, 177-189.
Ding, Y., He, L., Zhang, Q., Huang, Z., Che, X., Hou, J., Wang, H., Shen, H., Qiu, L., Li, Z., et al. (2004). Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J Pathol 203, 622-630.
Drosten, C., Gunther, S., Preiser, W., van der Werf, S., Brodt, H. R., Becker, S., Rabenau, H., Panning, M., Kolesnikova, L., Fouchier, R. A., et al. (2003). Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348, 1967-1976.
Gonzalez, M. E., and Carrasco, L. (2003). Viroporins. FEBS Lett 552, 28-34.
Herrewegh, A. A., Vennema, H., Horzinek, M. C., Rottier, P. J., and de Groot, R. J. (1995). The molecular genetics of feline coronaviruses: comparative sequence analysis of the ORF7a/7b transcription unit of different biotypes. Virology 212, 622-631.
Hussain, S., Pan, J., Chen, Y., Yang, Y., Xu, J., Peng, Y., Wu, Y., Li, Z., Zhu, Y., Tien, P., and Guo, D. (2005). Identification of novel subgenomic RNAs and noncanonical transcription initiation signals of severe acute respiratory syndrome coronavirus. J Virol 79, 5288-5295.
Ito, N., Mossel, E. C., Narayanan, K., Popov, V. L., Huang, C., Inoue, T., Peters, C. J., and Makino, S. (2005). Severe acute respiratory syndrome coronavirus 3a protein is a viral structural protein. J Virol 79, 3182-3186.
Jordan, R., Wang, L., Graczyk, T. M., Block, T. M., and Romano, P. R. (2002). Replication of a cytopathic strain of bovine viral diarrhea virus activates PERK and induces endoplasmic reticulum stress-mediated apoptosis of MDBK cells. J Virol 76, 9588-9599.
Kennedy, M., Boedeker, N., Gibbs, P., and Kania, S. (2001). Deletions in the 7a ORF of feline coronavirus associated with an epidemic of feline infectious peritonitis. Vet Microbiol 81, 227-234.
Ksiazek, T. G., Erdman, D., Goldsmith, C. S., Zaki, S. R., Peret, T., Emery, S., Tong, S., Urbani, C., Comer, J. A., Lim, W., et al. (2003). A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348, 1953-1966.
Law, P. T., Wong, C. H., Au, T. C., Chuck, C. P., Kong, S. K., Chan, P. K., To, K. F., Lo, A. W., Chan, J. Y., Suen, Y. K., et al. (2005). The 3a protein of severe acute respiratory syndrome-associated coronavirus induces apoptosis in Vero E6 cells. J Gen Virol 86, 1921-1930.
Lee, Y., Sohn, W. J., Kim, D. S., and Kwon, H. J. (2004). NF-kappaB- and c-Jun-dependent regulation of human cytomegalovirus immediate-early gene enhancer/promoter in response to lipopolysaccharide and bacterial CpG-oligodeoxynucleotides in macrophage cell line RAW 264.7. Eur J Biochem 271, 1094-1105.
Liao, Y., Lescar, J., Tam, J. P., and Liu, D. X. (2004). Expression of SARS-coronavirus envelope protein in Escherichia coli cells alters membrane permeability. Biochem Biophys Res Commun 325, 374-380.
Liu, D. X., Cavanagh, D., Green, P., and Inglis, S. C. (1991). A polycistronic mRNA specified by the coronavirus infectious bronchitis virus. Virology 184, 531-544.
Marra, M. A., Jones, S. J., Astell, C. R., Holt, R. A., Brooks-Wilson, A., Butterfield, Y. S., Khattra, J., Asano, J. K., Barber, S. A., Chan, S. Y., et al. (2003). The Genome sequence of the SARS-associated coronavirus. Science 300, 1399-1404.
McGoldrick, A., Lowings, J. P., and Paton, D. J. (1999). Characterisation of a recent virulent transmissible gastroenteritis virus from Britain with a deleted ORF 3a. Arch Virol 144, 763-770.
Mizzen, L., Macintyre, G., Wong, F., and Anderson, R. (1987). Translational regulation in mouse hepatitis virus infection is not mediated by altered intracellular ion concentrations. J Gen Virol 68, 2143-2151.
Nal, B., Chan, C., Kien, F., Siu, L., Tse, J., Chu, K., Kam, J., Staropoli, I., Crescenzo-Chaigne, B., Escriou, N., et al. (2005). Differential maturation and subcellular localization of severe acute respiratory syndrome coronavirus surface proteins S, M and E. J Gen Virol 86, 1423-1434.
Pavio, N., Romano, P. R., Graczyk, T. M., Feinstone, S. M., and Taylor, D. R. (2003). Protein synthesis and endoplasmic reticulum stress can be modulated by the hepatitis C virus envelope protein E2 through the eukaryotic initiation factor 2alpha kinase PERK. J Virol 77, 3578-3585.
Peiris, J. S., Lai, S. T., Poon, L. L., Guan, Y., Yam, L. Y., Lim, W., Nicholls, J., Yee, W. K., Yan, W. W., Cheung, M. T., et al. (2003). Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361, 1319-1325.
Poland, A. M., Vennema, H., Foley, J. E., and Pedersen, N. C. (1996). Two related strains of feline infectious peritonitis virus isolated from immunocompromised cats infected with a feline enteric coronavirus. J Clin Microbiol 34, 3180-3184.
Qiu, M., Shi, Y., Guo, Z., Chen, Z., He, R., Chen, R., Zhou, D., Dai, E., Wang, X., Si, B., et al. (2005). Antibody responses to individual proteins of SARS coronavirus and their neutralization activities. Microbes Infect 7, 882-889.
Rizzuto, R., Pinton, P., Ferrari, D., Chami, M., Szabadkai, G., Magalhaes, P. J., Di Virgilio, F., and Pozzan, T. (2003). Calcium and apoptosis: facts and hypotheses. Oncogene 22, 8619-8627.
Rota, P. A., Oberste, M. S., Monroe, S. S., Nix, W. A., Campagnoli, R., Icenogle, J. P., Penaranda, S., Bankamp, B., Maher, K., Chen, M. H., et al. (2003). Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300, 1394-1399.
Schneider, R. J., and Shenk, T. (1987). Impact of virus infection on host cell protein synthesis. Annu Rev Biochem 56, 317-332.
Shen, S., Wen, Z. L., and Liu, D. X. (2003). Emergence of a coronavirus infectious bronchitis virus mutant with a truncated 3b gene: functional characterization of the 3b protein in pathogenesis and replication. Virology 311, 16-27.
Tan, Y. J., Teng, E., Shen, S., Tan, T. H., Goh, P. Y., Fielding, B. C., Ooi, E. E., Tan, H. C., Lim, S. G., and Hong, W. (2004). A novel severe acute respiratory syndrome coronavirus protein, U274, is transported to the cell surface and undergoes endocytosis. J Virol 78, 6723-6734.
Tan, Y. J., Fielding, B. C., Goh, P. Y., Shen, S., Tan, T. H., Lim, S. G., and Hong, W. (2004). Overexpression of 7a, a protein specifically encoded by the severe acute respiratory syndrome coronavirus, induces apoptosis via a caspase-dependent pathway. J Virol 78, 14043-14047.
Thiel, V., Ivanov, K. A., Putics, A., Hertzig, T., Schelle, B., Bayer, S., Weissbrich, B., Snijder, E. J., Rabenau, H., Doerr, H. W., et al. (2003). Mechanisms and enzymes involved in SARS coronavirus genome expression. J Gen Virol 84, 2305-2315.
van Kuppeveld, F. J., Hoenderop, J. G., Smeets, R. L., Willems, P. H., Dijkman, H. B., Galama, J. M., and Melchers, W. J. (1997). Coxsackievirus protein 2B modifies endoplasmic reticulum membrane and plasma membrane permeability and facilitates virus release. EMBO J 16, 3519-3532.
van Kuppeveld, F. J., de Jong, A. S., Melchers, W. J., and Willems, P. H. (2005). Enterovirus protein 2B po(u)res out the calcium: a viral strategy to survive? Trends Microbiol 13, 41-44.
Vaughn, E. M., Halbur, P. G., and Paul, P. S. (1995). Sequence comparison of porcine respiratory coronavirus isolates reveals heterogeneity in the S, 3, and 3-1 genes. J Virol 69, 3176-3184.
Wilson, L., McKinlay, C., Gage, P., and Ewart, G. (2004). SARS coronavirus E protein forms cation-selective ion channels. Virology 330, 322-331.
Yan, H., Xiao, G., Zhang, J., Hu, Y., Yuan, F., Cole, D. K., Zheng, C., and Gao, G. F. (2004). SARS coronavirus induces apoptosis in Vero E6 cells. J Med Virol 73, 323-331.
Yeh, S. H., Wang, H. Y., Tsai, C. Y., Kao, C. L., Yang, J. Y., Liu, H. W., Su, I. J., Tsai, S. F., Chen, D. S., and Chen, P. J. (2004). Characterization of severe acute respiratory syndrome coronavirus genomes in Taiwan: molecular epidemiology and genome evolution. Proc Natl Acad Sci USA 101, 2542-2547.
Yu, C. J., Chen, Y. C., Hsiao, C. H., Kuo, T. C., Chang, S. C., Lu, C. Y., Wei, W. C., Lee, C. H., Huang, L. M., Chang, M. F., et al. (2004). Identification of a novel protein 3a from severe acute respiratory syndrome coronavirus. FEBS Lett 565, 111-116.
Yuan, X., Li, J., Shan, Y., Yang, Z., Zhao, Z., Chen, B., Yao, Z., Dong, B., Wang, S., Chen, J., and Cong, Y. (2005). Subcellular localization and membrane association of SARS-CoV 3a protein. Virus Res 109, 191-202.
Zeng, R., Yang, R. F., Shi, M. D., Jiang, M. R., Xie, Y. H., Ruan, H. Q., Jiang, X. S., Shi, L., Zhou, H., Zhang, L., et al. (2004). Characterization of the 3a protein of SARS-associated coronavirus in infected vero E6 cells and SARS patients. J Mol Biol 341, 271-279.