研究生: |
林義珉 Lin, Yi-Min |
---|---|
論文名稱: |
使用TPD緩衝層於有機/金屬接面提升有機薄膜電晶體特性 Performance Improvement of Organic Thin-Film Transistors using TPD Buffer Layer in Metal/Organic Interface |
指導教授: |
蔡宗祐
Tsai, Tzong-Yow |
共同指導教授: |
李清庭
Lee, Ching-Ting |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 63 |
中文關鍵詞: | 有機薄膜電晶體 、五苯環 、TPD |
外文關鍵詞: | Organic Thin-Film Transistors, Pentacene, TPD |
相關次數: | 點閱:114 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為研究有機薄膜電晶體之場效載子移動率(Field Effect Carrier Mobility, 以μFE表示)的改善,本實驗關注於頂部電極與有機通道層之接觸。先以頂接觸電極之鍍率作為探討,其鍍率分別為0.5 Å/s、1 Å/s、2 Å/s 和3 Å/s。由實驗結果可知元件特性會隨著鍍率增加而增加,其中飽和電流由∣-8.6∣μA增加至∣-13.5∣μA,而場效載子移動率則由0.28 cm2/Vs提升至0.46 cm2/Vs。若於頂接觸電極與有機通道層之間加入TPD緩衝層,此實驗之最佳厚度為20 Å,最佳元件特性為:飽和電流∣-69.7∣μA,場效載子移動率為1.10 cm2/Vs。
The purpose of this research is to improve the field effect carrier mobility (μFE) of organic thin film transistor. Our research pay attention at the interface between the top electrode and organic channel layer. At first, we change the evaporating rate of top electrode from 0.5 Å/s to 3 Å/s. The result of this experiment is that the saturation current increase from ∣-8.6∣μA to∣-13.5∣μA, and the field effect carrier mobility increase from 0.28 cm2/Vs to 0.46 cm2/Vs. Second, we inserted the TPD buffer layer between top electrode and organic channel layer. At this experiment we found the optimal thick of the buffer layer is 20 Å. The optimal device’s saturation current is ∣-69.7∣μA, and the field effect carrier mobility increase to 1.10 cm2/Vs.
Chapter 1
[1]C. K. Chianh, C. R. Fincher Jr., Y. W. Park,A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, and A. G. MacdDiarmid, “Electrical Conductivity in Doped Polyacetylene”, Phys. Rev. Lett.,39,1098(1977).
[2] F. Garnier, R. Hajlaoui, A. Yassar, and P. Srivastava, “All-Polymer Field-Effect Transistor Realized by Printing Techniques”, Science, 265,1684(1994).
[3] N. J. Watkins, L. Yan, and Y. Gao, “Electronic structure symmetry of interfaces between pentacene and metals”,Appl. Phys. Lett., 80,4384(2002).
[4] H. Peisert, M. Knupfer, and J. Fink, “Energy level alignment at organic metal interfaces: Dipole and ionization potential”. Appl. Phys. Lett., 81, 2400(2002).
[5] J. M. Zhao, S. T. Zhang, X. J. Wang, Y. Q. Zhan, X. Z. Wang, G. Y. Zhang, Z. J. Wang, X. M. Ding, W. Huang, and X. Y. Hou, “Dual role of LiF as a hole-injection buffer in organic light-emitting diodes”, Appl. Phys. Lett., 84,2913(2004)
[6] S. T. Zhang, X. M. Ding, J. M. Zhao, H. Z. Shi, J. He, Z. H. Xiong, H. J. Ding, E. G. Obbard, Y. Q. Zhan, W. Huang, and X. Y. Hou, “Buffer-layer-induced barrier reduction : Role of tunneling in organic Light-emitting devices” , Appl. Phys. Lett., 84, 425(2004)
[7] X. J. Wang, J. M. Zhao, Y. C. Zhou, X. Z. Wang, S. T. Zhang, Y. Q. Zhan, Z. Xu, H. J. Ding, G. Y. Zhong, H.Z. Shi, Z. H. Xiong, Y. Liu, Z. J. Wang, E. G. Obbard, X. M. Ding, W. Haung, and X. Y. Hou, “Enhancement of electron injection in organic light-emitter devices using an Ag/LiF cathode”, J. Appl. Phys., 95, 3828(2004)
Chapter 2
[1] F. Ebisawa, T. Kurokawa, and S. Nara, “Electrical properties of polyacetylene/polysiloxane interface”, J. Appl. Phys., 54, 3255 (1983).
[2] A. Tsumura, H. Koezuka, and T. Ando, “Macromolecular electronic device: Field-effect transistor with a polythiophene thin film”, Appl. Phys. Lett., 49, 1210 (1986).
[3] V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, and J. A. Rogers, “Elastomeric transistor stamps: reversible probing of charge transport in organic crystals”, Science, 303, 1644 (2004).
[4] S. M. Sze, “Physics of semiconductor device”, Wiley (1981).
[5] P. W. Anderson, “Absence of diffusion in certain random lattices” Phys. Rev., 109, 1492 (1958).
[6] G. Horowitz, “Organic field-effect transistors” Adv. Mater., 5, 10 (1998).
[7] M. C. J. M. Vissenberg and M. Matters, “Theory of the field-effect mobility in amorphous organic transistors” Philips Research Laboratories, 5656 AA Eindhoven, The Netherlands Instituut-Lorentz, University of Leiden, 2300 RA Leiden, The Netherlands, (2006).
[8] J. Takeya, C. Goldmann, S. Haas, K. P. Pernstich, B. Ketterer, and B. Batlogg, “Field-induced charge transport at the surface of pentacene single crystals: a method to study charge dynamics of 2D electron systems in organic crystals” Laboratory for Solid State Physics ETH, CH-8093 Z¨urich, Switzerland, (2006).
[9] N. J. Watkins, L. Yan, and Y. Gao, “Electronic structure symmetry of interfaces between pentacene and metals”, Appl. Phys. Lett., 80, 4384 (2002).
[10] F. Amy, C. Chan, and A. Kahn, “Polarization at the gold/pentacene interface”, Org. Chem., 6, 85 (2005).
[11] K. Ihm, H. E. Heo, S. Chung, J. R. Ahn, J. H. Kim, and T. H. Kang, “Odd characteristics of Au film on pentacene”, Appl. Phys. Lett., 90, 242111 (2007).
[12] Y. E. Kim, H. Park, and J. J. Kim, “Enhanced quantum efficiency in polymer electroluminescence devices by inserting a tunneling barrier formed by Langmuir–Blodgett films”, Appl. Phys. Lett., 69, 599 (1996).
[13] M. D. Jiang, P. Y. Lee, T. L. Chiu, H. C. Lin, J. H. Lee, “Optmizing hole-injection in organic electroluminescent devices by modifying CuPc/NPB interface”, Synth. Met,. 161, 1828(2011).
[14] H. Mu, D. Klotzkin, A. de Silva, H. P. Wagner, D. White and B. Sharpton, “Temperature dependence of electron mobility, electroluminescence and photoluminescence of Alq3 in OLED”, J. Phys. D: Appl. Phys. 41, 235109(2008).
[15] M. Zadsar, H. R. Fallah, M. H. Mahmoodzadeh, S. V. Tabatabaei, “The effect of Ag layer thickness on the properties of WO3/Ag/MoO3 multilayer films as anode in organic light emitting diodes”, J. lumin, 132, 992(2012).
[16] L. S. Hung, C. W. Tang, and M. G. Mason, “Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode”, Appl. Phys. Lett., 70, 152 (1997).
[17] F. Li, H. Tang, J. Anderegg, and J. Shinar, “Fabrication and electroluminescence of double-layered organic light-emitting diodes with the Al2O3 /Al cathode”, Appl. Phys. Lett., 70, 1233 (1997).
[18] Z. B. Deng, X. M. Ding, S. T. Lee, and W. A. Gambling, “Enhanced brightness and efficiency in organic electroluminescent devices using SiO2 buffer layers”, Appl. Phys. Lett., 74, 1227 (1999).
[19] G. Daniel, B. Paul, K. Krishna, and Z. Jie, “Printed organic and molecular electronics”, Kluwer Academic Pub (2004).
Chapter 3
[1] T. S. Huang,Y. K. Suand P. C. Wang, “Study of organic thin film transistor with polymethylmethacrylate as a dielectric layer”, Appl. Phys. Lett., 91, 092116 (2007).
[2] W. Wang, J. Shi, W. Jiang, S. Guo, H. Zhang, B. Quan and D. Ma, “High-mobility pentacene thin-film transistors with copolymer-gate dielectric”, Microelectron. J., 38, 27 (2007).
[3] H. Mu, D. Klotzkin, A. de Silva, H. P. Wagner, D. White and B. Sharpton, “Temperature dependence of electron mobility, electroluminescence and photoluminescence of Alq3 in OLED”, J. Phys. D: Appl. Phys. 41, 235109(2008).
[4] M. A. Diaz-Garcia, S. F. De Avila, M. G. Kuzyk, “Dye-doped poled polymers for blue organic diode lasers”, Appl. Phy. Lett. 80, 4486(2002).
Chapter 4
[1] L. Z. Yu and C. T. Lee, “Investigation of three-terminal organic-based devices with memory effect and negative differential resistance”, Appl. Phys. Lett., 95, 103305(2009).
[2] G. Horowitz, M. E. Hajlaoui, and R. Hajlaoui, “Temperature and gate voltage dependence of hole mobility in polycrystalline oligothiophene thin film transistor”, J. Appl. Phys., 81, 4456(2000).
[3] J. Park, J.S. Choi, “Study on the characteristics of metal–organic interface for organic thin-film transistors”, Synth. Met, 155, 657(2005).
[4] E. Ito, H. Oji, H. Ishii, K. Oichi, Y. Ouchi, and K. Seki, “Interfacial electronic structure of long-chain alkane/metal systems studied by UV-photoelectron and metastable atom electron spectroscopies”, Chem. Phys. Lett., 24, 137 (1998).
[5] N. J. Watkins, L. Yan, and Y. Gao, “Electronic structure symmetry of interfaces between pentacene and metals”, Appl. Phys. Lett., 80, 4384(2002).
[6] Y. C. Li, Y. J. Lin, C. Y. Wei, Z. X. Lin, T. C. Wen, M. Y. Chang, C. L. Tsai, and Y. H. Wang, “Performance improvement in transparent organic thin-film transistors with indium tin oxide/fullerene source/drain contact”, Appl. Phys. Lett., 95, 163303(2009).
[7] H. Ishii and K. Seki, “Energy Level Alignment at Organic/Metal Interfaces Studied by UV Photoemission: Breakdown of Traditional Assumption of a Common Vacuum Level at the Interface”, IEEE, TED, 44, 1295(1997).