簡易檢索 / 詳目顯示

研究生: 林義珉
Lin, Yi-Min
論文名稱: 使用TPD緩衝層於有機/金屬接面提升有機薄膜電晶體特性
Performance Improvement of Organic Thin-Film Transistors using TPD Buffer Layer in Metal/Organic Interface
指導教授: 蔡宗祐
Tsai, Tzong-Yow
共同指導教授: 李清庭
Lee, Ching-Ting
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 63
中文關鍵詞: 有機薄膜電晶體五苯環TPD
外文關鍵詞: Organic Thin-Film Transistors, Pentacene, TPD
相關次數: 點閱:114下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為研究有機薄膜電晶體之場效載子移動率(Field Effect Carrier Mobility, 以μFE表示)的改善,本實驗關注於頂部電極與有機通道層之接觸。先以頂接觸電極之鍍率作為探討,其鍍率分別為0.5 Å/s、1 Å/s、2 Å/s 和3 Å/s。由實驗結果可知元件特性會隨著鍍率增加而增加,其中飽和電流由∣-8.6∣μA增加至∣-13.5∣μA,而場效載子移動率則由0.28 cm2/Vs提升至0.46 cm2/Vs。若於頂接觸電極與有機通道層之間加入TPD緩衝層,此實驗之最佳厚度為20 Å,最佳元件特性為:飽和電流∣-69.7∣μA,場效載子移動率為1.10 cm2/Vs。

    The purpose of this research is to improve the field effect carrier mobility (μFE) of organic thin film transistor. Our research pay attention at the interface between the top electrode and organic channel layer. At first, we change the evaporating rate of top electrode from 0.5 Å/s to 3 Å/s. The result of this experiment is that the saturation current increase from ∣-8.6∣μA to∣-13.5∣μA, and the field effect carrier mobility increase from 0.28 cm2/Vs to 0.46 cm2/Vs. Second, we inserted the TPD buffer layer between top electrode and organic channel layer. At this experiment we found the optimal thick of the buffer layer is 20 Å. The optimal device’s saturation current is ∣-69.7∣μA, and the field effect carrier mobility increase to 1.10 cm2/Vs.

    摘要 I Abstract II 致謝 III 目錄 IV 圖表目錄 VI 第一章 緒論 1 1-1 有機半導體簡介 1 1-2 研究動機 2 參考文獻 3 第二章 背景理論 5 2-1 有機薄膜電晶體 5 2-1-1 有機薄膜電晶體之基本工作原理 6 2-1-2 有機薄膜電晶體之重要參數 7 2-2 載子傳輸機制 11 2-2-1 Multiple Trapping and Release(MTR) 11 2-2-2 Hopping 11 2-3 金屬-緩衝層-有機接面之概論 12 2-4 表面功函數 14 2-5 接觸電阻[19] 14 參考文獻 23 第三章 實驗流程 26 3-1 實驗架構 26 3-2 實驗材料 26 3-2-1 Pentacene (五苯環) 27 3-2-2 PMMA (聚甲基丙烯酸甲酯) 28 3-2-3 TPD(N,N'-二苯基-N,N'-二(3-甲基苯基)-1,1'-聯苯-4,4'-二胺) 28 3-2-4 金屬電極材料 29 3-3 實驗步驟 29 參考文獻 35 第四章 結果與討論 36 4-1 改變頂接觸電極鍍率 36 4-2 具緩衝層TPD之有機薄膜電晶體 39 4-3 通道層與頂接觸電極接面特性分析 41 參考文獻 61 第五章 結論與建議 63 5-1 結論 63 5-2 建議 63 圖表目錄 圖2-1 Ebisawa等人發表之有機電晶體/16 圖2-2 Tsumura等人發表之有機電晶體/16 圖2-3 有機薄膜電晶體元件結構(a) top contact、(b) bottom contact/17 圖2-4 VGS > 0時,有機半導體與絕緣層介面產生空乏區,有機薄膜電晶體工作於空乏區示意圖/18 圖2-5 VGS<0 且 VD=VS=0 時,有機薄膜電晶體之通道層與絕緣層介面累積電洞形成通道示意圖/18 圖2-6 當│VDS│<│VGS│ 時有機薄膜電晶體源極和汲極間產生電流示意圖/19 圖2-7 當│VDS│>│VGS│時,有機半導體層近汲極區產生空乏區/19 圖2-8 有機薄膜電晶體電壓-電流曲線圖(a)輸出特性曲線、(b)轉換特性曲線/20 圖2-9 有機半導體載子傳輸時局部狀態間之跳躍通過相鄰分子間之共軛系統示意圖/21 圖2-10 表面功函數與能階示意圖/21 圖2-11 薄膜電晶體之通道電阻與接觸電阻示意圖/22 圖2-12 不同通道長度下之VGT電壓對應開路電阻之關係圖/22 圖2-13 不同VGT下之通道長度對應寬度規一化開路電阻關係圖/22 圖3-1 有極薄膜電晶體元件實驗架構(a)無TPD緩衝層元件結構圖 (b)有TPD緩衝層元件結構圖/32 圖3-2 Pentacene 分子結構圖/33 圖3-3 PMMA分子結構圖/33 圖3-4 TPD 分子結構圖/33 圖3-5 本實驗閘極電極金屬遮罩圖型/34 圖3-6 本實驗通道層金屬遮罩圖型/34 圖3-7 本實驗源極/汲極電極金屬遮罩圖型/34 圖4-1 頂接觸電極之鍍率為0.5 Å/s之元件輸出特性曲線/45 圖4-2 頂接觸電極之鍍率為1 Å/s之元件輸出特性曲線/45 圖4-3 頂接觸電極之鍍率為2 Å/s之元件輸出特性曲線/46 圖4-4 頂接觸電極之鍍率為3 Å/s之元件輸出特性曲線/46 圖4-5 頂接觸電極之鍍率為0.5 Å/s之元件轉換特性曲線/47 圖4-6 頂接觸電極之鍍率為1 Å/s之元件轉換特性曲線/47 圖4-7 頂接觸電極之鍍率為2 Å/s之元件轉換特性曲線/48 圖4-8 頂接觸電極之鍍率為3 Å/s之元件轉換特性曲線/48 圖4-9 不同頂接觸電極鍍率之元件最大飽和電流整理/49 圖4-10不同頂接觸電極鍍率之元件場效載子移動率整理/49 圖4-11 鍍率0.5 Å/s和3Å/s入侵通道層之深度與濃度/50 圖4-12金入侵通道層之縱深示意圖/50 圖4-13 無TPD緩衝層之元件輸出特性曲線/51 圖4-14 具有TPD緩衝層10Å之元件輸出特性曲線/51 圖4-15 具有TPD緩衝層20Å之元件輸出特性曲線/52 圖4-16 具有TPD緩衝層30Å之元件輸出特性曲線/52 圖4-17 無TPD緩衝層之元件轉換特性曲線/53 圖4-18 具有TPD緩衝層10Å之元件轉換特性曲線/53 圖4-19 具有TPD緩衝層20Å之元件轉換特性曲線/54 圖4-20 具有TPD緩衝層30Å之元件轉換特性曲線/54 圖4-21 不同厚度TPD緩衝層元件之場效載子移動率/55 圖4-22 不同厚度TPD緩衝層元件之飽和電流/55 圖4-23 不同緩衝層厚度之元件開路電阻/56 圖4-24 五苯環與金之接面中加入(a)無TPD緩衝層、(b)薄TPD緩衝層及(c)厚TPD緩衝層[7]之能帶示意圖/56 圖4-25 不同TPD緩衝層厚度之表面功函數/57 圖4-26 單一載子(電洞)傳輸元件能階示意圖/57 圖4-27 單一載子(電洞)傳輸元件I-V特性圖/58 圖4-28 未加入TPD Buffer layer時之元件電阻/58 圖4-29 加入TPD Buffer layer 20Å時之元件電阻/59 圖4-30 不同條件之元件接觸電阻/59 表4-1 各種條件元件之參數表整理/60

    Chapter 1

    [1]C. K. Chianh, C. R. Fincher Jr., Y. W. Park,A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, and A. G. MacdDiarmid, “Electrical Conductivity in Doped Polyacetylene”, Phys. Rev. Lett.,39,1098(1977).
    [2] F. Garnier, R. Hajlaoui, A. Yassar, and P. Srivastava, “All-Polymer Field-Effect Transistor Realized by Printing Techniques”, Science, 265,1684(1994).
    [3] N. J. Watkins, L. Yan, and Y. Gao, “Electronic structure symmetry of interfaces between pentacene and metals”,Appl. Phys. Lett., 80,4384(2002).
    [4] H. Peisert, M. Knupfer, and J. Fink, “Energy level alignment at organic metal interfaces: Dipole and ionization potential”. Appl. Phys. Lett., 81, 2400(2002).
    [5] J. M. Zhao, S. T. Zhang, X. J. Wang, Y. Q. Zhan, X. Z. Wang, G. Y. Zhang, Z. J. Wang, X. M. Ding, W. Huang, and X. Y. Hou, “Dual role of LiF as a hole-injection buffer in organic light-emitting diodes”, Appl. Phys. Lett., 84,2913(2004)
    [6] S. T. Zhang, X. M. Ding, J. M. Zhao, H. Z. Shi, J. He, Z. H. Xiong, H. J. Ding, E. G. Obbard, Y. Q. Zhan, W. Huang, and X. Y. Hou, “Buffer-layer-induced barrier reduction : Role of tunneling in organic Light-emitting devices” , Appl. Phys. Lett., 84, 425(2004)
    [7] X. J. Wang, J. M. Zhao, Y. C. Zhou, X. Z. Wang, S. T. Zhang, Y. Q. Zhan, Z. Xu, H. J. Ding, G. Y. Zhong, H.Z. Shi, Z. H. Xiong, Y. Liu, Z. J. Wang, E. G. Obbard, X. M. Ding, W. Haung, and X. Y. Hou, “Enhancement of electron injection in organic light-emitter devices using an Ag/LiF cathode”, J. Appl. Phys., 95, 3828(2004)

    Chapter 2

    [1] F. Ebisawa, T. Kurokawa, and S. Nara, “Electrical properties of polyacetylene/polysiloxane interface”, J. Appl. Phys., 54, 3255 (1983).
    [2] A. Tsumura, H. Koezuka, and T. Ando, “Macromolecular electronic device: Field-effect transistor with a polythiophene thin film”, Appl. Phys. Lett., 49, 1210 (1986).
    [3] V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, and J. A. Rogers, “Elastomeric transistor stamps: reversible probing of charge transport in organic crystals”, Science, 303, 1644 (2004).
    [4] S. M. Sze, “Physics of semiconductor device”, Wiley (1981).
    [5] P. W. Anderson, “Absence of diffusion in certain random lattices” Phys. Rev., 109, 1492 (1958).
    [6] G. Horowitz, “Organic field-effect transistors” Adv. Mater., 5, 10 (1998).
    [7] M. C. J. M. Vissenberg and M. Matters, “Theory of the field-effect mobility in amorphous organic transistors” Philips Research Laboratories, 5656 AA Eindhoven, The Netherlands Instituut-Lorentz, University of Leiden, 2300 RA Leiden, The Netherlands, (2006).
    [8] J. Takeya, C. Goldmann, S. Haas, K. P. Pernstich, B. Ketterer, and B. Batlogg, “Field-induced charge transport at the surface of pentacene single crystals: a method to study charge dynamics of 2D electron systems in organic crystals” Laboratory for Solid State Physics ETH, CH-8093 Z¨urich, Switzerland, (2006).
    [9] N. J. Watkins, L. Yan, and Y. Gao, “Electronic structure symmetry of interfaces between pentacene and metals”, Appl. Phys. Lett., 80, 4384 (2002).
    [10] F. Amy, C. Chan, and A. Kahn, “Polarization at the gold/pentacene interface”, Org. Chem., 6, 85 (2005).
    [11] K. Ihm, H. E. Heo, S. Chung, J. R. Ahn, J. H. Kim, and T. H. Kang, “Odd characteristics of Au film on pentacene”, Appl. Phys. Lett., 90, 242111 (2007).
    [12] Y. E. Kim, H. Park, and J. J. Kim, “Enhanced quantum efficiency in polymer electroluminescence devices by inserting a tunneling barrier formed by Langmuir–Blodgett films”, Appl. Phys. Lett., 69, 599 (1996).
    [13] M. D. Jiang, P. Y. Lee, T. L. Chiu, H. C. Lin, J. H. Lee, “Optmizing hole-injection in organic electroluminescent devices by modifying CuPc/NPB interface”, Synth. Met,. 161, 1828(2011).
    [14] H. Mu, D. Klotzkin, A. de Silva, H. P. Wagner, D. White and B. Sharpton, “Temperature dependence of electron mobility, electroluminescence and photoluminescence of Alq3 in OLED”, J. Phys. D: Appl. Phys. 41, 235109(2008).
    [15] M. Zadsar, H. R. Fallah, M. H. Mahmoodzadeh, S. V. Tabatabaei, “The effect of Ag layer thickness on the properties of WO3/Ag/MoO3 multilayer films as anode in organic light emitting diodes”, J. lumin, 132, 992(2012).
    [16] L. S. Hung, C. W. Tang, and M. G. Mason, “Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode”, Appl. Phys. Lett., 70, 152 (1997).
    [17] F. Li, H. Tang, J. Anderegg, and J. Shinar, “Fabrication and electroluminescence of double-layered organic light-emitting diodes with the Al2O3 /Al cathode”, Appl. Phys. Lett., 70, 1233 (1997).
    [18] Z. B. Deng, X. M. Ding, S. T. Lee, and W. A. Gambling, “Enhanced brightness and efficiency in organic electroluminescent devices using SiO2 buffer layers”, Appl. Phys. Lett., 74, 1227 (1999).
    [19] G. Daniel, B. Paul, K. Krishna, and Z. Jie, “Printed organic and molecular electronics”, Kluwer Academic Pub (2004).

    Chapter 3

    [1] T. S. Huang,Y. K. Suand P. C. Wang, “Study of organic thin film transistor with polymethylmethacrylate as a dielectric layer”, Appl. Phys. Lett., 91, 092116 (2007).
    [2] W. Wang, J. Shi, W. Jiang, S. Guo, H. Zhang, B. Quan and D. Ma, “High-mobility pentacene thin-film transistors with copolymer-gate dielectric”, Microelectron. J., 38, 27 (2007).
    [3] H. Mu, D. Klotzkin, A. de Silva, H. P. Wagner, D. White and B. Sharpton, “Temperature dependence of electron mobility, electroluminescence and photoluminescence of Alq3 in OLED”, J. Phys. D: Appl. Phys. 41, 235109(2008).
    [4] M. A. Diaz-Garcia, S. F. De Avila, M. G. Kuzyk, “Dye-doped poled polymers for blue organic diode lasers”, Appl. Phy. Lett. 80, 4486(2002).

    Chapter 4

    [1] L. Z. Yu and C. T. Lee, “Investigation of three-terminal organic-based devices with memory effect and negative differential resistance”, Appl. Phys. Lett., 95, 103305(2009).
    [2] G. Horowitz, M. E. Hajlaoui, and R. Hajlaoui, “Temperature and gate voltage dependence of hole mobility in polycrystalline oligothiophene thin film transistor”, J. Appl. Phys., 81, 4456(2000).
    [3] J. Park, J.S. Choi, “Study on the characteristics of metal–organic interface for organic thin-film transistors”, Synth. Met, 155, 657(2005).
    [4] E. Ito, H. Oji, H. Ishii, K. Oichi, Y. Ouchi, and K. Seki, “Interfacial electronic structure of long-chain alkane/metal systems studied by UV-photoelectron and metastable atom electron spectroscopies”, Chem. Phys. Lett., 24, 137 (1998).
    [5] N. J. Watkins, L. Yan, and Y. Gao, “Electronic structure symmetry of interfaces between pentacene and metals”, Appl. Phys. Lett., 80, 4384(2002).
    [6] Y. C. Li, Y. J. Lin, C. Y. Wei, Z. X. Lin, T. C. Wen, M. Y. Chang, C. L. Tsai, and Y. H. Wang, “Performance improvement in transparent organic thin-film transistors with indium tin oxide/fullerene source/drain contact”, Appl. Phys. Lett., 95, 163303(2009).
    [7] H. Ishii and K. Seki, “Energy Level Alignment at Organic/Metal Interfaces Studied by UV Photoemission: Breakdown of Traditional Assumption of a Common Vacuum Level at the Interface”, IEEE, TED, 44, 1295(1997).

    下載圖示 校內:2017-09-04公開
    校外:2017-09-04公開
    QR CODE