| 研究生: |
邱詠熙 Chiu, Yung-Hsi |
|---|---|
| 論文名稱: |
課徵機車排放費對於機車選擇移轉之影響 The Impact of Emission Charges to Scooter Choices Switching |
| 指導教授: |
陳彥仲
Chen, Yen-Jong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 都市計劃學系 Department of Urban Planning |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 減碳政策 、運具選擇 、機車排放費 、多項羅吉特模型 |
| 外文關鍵詞: | Carbon Emission Policy, Emission Charges, Mode Choice, Multinomial Logit Model |
| 相關次數: | 點閱:170 下載:19 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著極端氣候對於環境造成負擔日趨明顯,近年國際間積極關注降低溫室氣體排放之議題,並以降低能源消耗及溫室氣體排放量為實施目標。而近年因整體經濟發展及交通運輸需求,乃至於私人運具使用普及。因此,為兼顧民生私人運具的需求及降低溫室氣體排放,目前國際上係透過建立補貼機制,作為鼓勵使用電動運具之方式。
然而,過往探討電動運具推廣政策之相關研究指出,財政補貼缺乏穩定性,對於提升電動運具市場規模成效有限,並且無法長期延續其效益。另從污染者付費之觀點而論,透過差別訂價(Different Pricing)將車輛排放產生之環境外部成本回歸於污染者本身,同樣具有誘導民眾移轉使用電動運具之特性。鑒此,本研究將以污染者付費原則為切入點,以課徵機車排放費之方式,降低電動機車使用相對成本,形成經濟誘因,藉以探討其是否會影響燃油機車使用者之機車選擇行為,並促進使用者移轉至選擇電動機車之意願。
因此本研究以課徵機車排放費之方式建立燃油機車、換電型電動機車及充電型電動機車之三選一敘述性偏好問卷,建立多項羅吉特模型,探討影響機車選擇行為之重要因素,並試圖了解課徵機車排放費對機車選擇結果之影響。而研究結果顯示課徵機車排放費對機車選擇呈現負向顯著影響,並且選擇燃油機車之比例確實會隨著費額上升而產生逐漸下降之趨勢,反映該政策實施能有效增加電動機車使用機率,同時估計出落實機車全電化時的機車排放費每公里約需課徵3.5元。
Climate change has not only promoted internationally aggressive attention to lowering carbon emissions, but also reduced energy consumption as implementation goal. In order to take into account the dependence on specific vehicle and reduce carbon emissions, the implementation of incentives is used to improving on using electric vehicle at present. However, previous studies on electric vehicle promotion policies pointed out that financial allowances have lacked stability and limited effectiveness in increasing the usage of electric scooters. In view of this, this research will take the polluter-pays-principal (PPP) as the entry point and use emission charges to reduce the relative cost of electric scooters. It can explore whether emission charges will affect the motor choice of gasoline-fueled scooter’s users.
Therefore, this study establishes a questionnaire survey and multinomial logit model to explore a factor affecting the choice of scooters and the impact of the emission charges. The results show that the environmental pollution tax on the scooter is negative and the ratio of gasoline-fueled scooter have a decline with the increase of tax. It is reflected that implementing this policy can effectively increase the probability of using electric scooters. Moreover, it is estimated that the emission charges when the scooters are fully electrified will be charged about 3.5 NTD per kilometer.
Bakker, S., & Trip, J. J. (2013). Policy options to support the adoption of electric vehicles in the urban environment. Transportation Research Part D-transport and Environment, 25, 18-23.
Barros, V., & Padua, H. (2019). Can green taxation trigger plug-in hybrid electric vehicle acquisition? Euromed Journal of Business, 14(2), 168-186.
Ben, L., & Potter, S. (2007). The adoption of cleaner vehicles in the UK: exploring the consumer attitude-action gap. Journal of Cleaner Production, 15(11-12), 1085-1092.
Bjerkan, K. Y., Norbech, T. E., & Nordtomme, M. E. (2016). Incentives for promoting Battery Electric Vehicle (BEV) adoption in Norway. Transportation Research Part D-transport and Environment, 43, 169-180.
Brand, C., Anable, J., & Tran, M. (2013). Accelerating the transformation to a low carbon passenger transport system: The role of car purchase taxes, feebates, road taxes and scrappage incentives in the UK. Transportation Research Part A: Policy and Practice, 49, 132-148.
Brownstone, D., Bunch, D. S., & Train, K. (2000). Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles. Transportation Research Part B-Methodological, 34(5), 315-338.
Bunch, D. S., Bradley, M., Golob, T. F., Kitamura, R., & Occhiuzzo, G. P. (1993). DEMAND FOR CLEAN-FUEL VEHICLES IN CALIFORNIA - A DISCRETE-CHOICE STATED PREFERENCE PILOT PROJECT. Transportation Research Part a-Policy and Practice, 27(3), 237-253.
Calfee, J. E. (1985). ESTIMATING THE DEMAND FOR ELECTRIC AUTOMOBILES USING FULLY DISAGGREGATED PROBABILISTIC CHOICE ANALYSIS. Transportation Research Part B-Methodological, 19(4), 287-301.
Cherry, C., & Cervero, R. (2007). Use characteristics and mode choice behavior of electric bike users in China. Transport Policy, 14(3), 247-257.
Chiu, Y. C., & Tzeng, G. H. (1999). The market acceptance of electric motorcycles in Taiwan experience through a stated preference analysis. Transportation Research Part D-transport and Environment, 4(2), 127-146.
Diamond, D. (2009). The impact of government incentives for hybrid-electric vehicles: Evidence from US states. Energy Policy, 37(3), 972-983.
Dijk, M., Orsato, R. J., & Kemp, R. (2013). The emergence of an electric mobility trajectory. Energy Policy, 52, 135-145.
Edison, S. W., & Geissler, G. L. (2003). Measuring attitudes towards general technology: Antecedents, hypotheses and scale development. Journal of Targeting, Measurement and Analysis for Marketing, 12(2), 137-156.
Egbue, O., & Long, S. (2012). Barriers to widespread adoption of electric vehicles: An analysis of consumer attitudes and perceptions. Energy Policy, 48, 717-729.
Finon, D., & Perez, Y. (2007). The social efficiency of instruments of promotion of renewable energies: A transaction-cost perspective. Ecological Economics, 62(1), 77-92.
Friedlingstein, P., Andrew, R. M., Rogelj, J., Peters, G. P., Canadell, J. G., Knutti, R., . . . Le Quere, C. (2014). Persistent growth of CO2 emissions and implications for reaching climate targets. Nature Geoscience, 7(10), 709-715.
Funk, K., & Rabl, A. (1999). ELECTRIC VERSUS CONVENTIONAL VEHICLES: SOCIAL COSTS AND BENEFITS IN FRANCE. Transportation Research Part D-transport and Environment, 4, 397-411.
Gallagher, K. S., & Muehlegger, E. (2011). Giving green to get green? Incentives and consumer adoption of hybrid vehicle technology. Journal of Environmental Economics and Management, 61(1), 1-15.
Hackbarth, A., & Madlener, R. (2013). Consumer preferences for alternative fuel vehicles: A discrete choice analysis. Transportation Research Part D-transport and Environment, 25, 5-17.
Hepburn, C. (2006). Regulation by Prices, Quantities, or Both: A Review of Instrument Choice. Oxford Review of Economic Policy, 22(2), 226-247.
Hidrue, M. K., Parsons, G. R., Kempton, W., & Gardner, M. P. (2011). Willingness to pay for electric vehicles and their attributes. Resource and Energy Economics, 33(3), 686-705.
Ishii, S., Tabushi, S., Aramaki, T., & Hanaki, K. (2010). Impact of future urban form on the potential to reduce greenhouse gas emissions from residential, commercial and public buildings in Utsunomiya, Japan. Energy Policy, 38(9), 4888-4896.
Jenn, A., Springel, K., & Gopal, A. R. (2018). Effectiveness of electric vehicle incentives in the United States. Energy Policy, 119, 349-356.
Jin, L., Stephanie, S., & Nic, L. (2014). Evaluation of state-level US electric vehicle incentives.
Kumar, R. R., & Alok, K. (2020). Adoption of electric vehicle: A literature review and prospects for sustainability. Journal of Cleaner Production, 253, 21.
Kurani, K. S., Turrentine, T., & Sperling, D. (1996). Testing electric vehicle demand in 'hybrid households' using a reflexive survey. Transportation Research Part D-transport and Environment, 1(2), 131-150.
Lu, H., Fowkes, T., & Wardman, M. (2008). Amending the Incentive for Strategic Bias in Stated Preference Studies Case Study in Users' Valuation of Rolling Stock. Transportation Research Record(2049), 128-135.
Luk, J. M., Kim, H. C., De Kleine, R., Wallington, T. J., & MacLean, H. L. (2017). Review of the Fuel Saving, Life Cycle GHG Emission, and Ownership Cost Impacts of Lightweighting Vehicles with Different Powertrains. Environmental Science & Technology, 51(15), 8215-8228.
Mabit, S. L. (2014). Vehicle type choice under the influence of a tax reform and rising fuel prices. Transportation Research Part a-Policy and Practice, 64, 32-42.
Menanteau, P., Finon, D., & Lamy, M. L. (2003). Prices versus quantities: choosing policies for promoting the development of renewable energy. Energy Policy, 31(8), 799-812.
Pasaoglu, G., Honselaar, M., & Thiel, C. (2012). Potential vehicle fleet CO2 reductions and cost implications for various vehicle technology deployment scenarios in Europe. Energy Policy, 40, 404-421.
Rogelj, J., Luderer, G., Pietzcker, R. C., Kriegler, E., Schaeffer, M., Krey, V., & Riahi, K. (2015). Energy system transformations for limiting end-of-century warming to below 1.5 degrees C. Nature Climate Change, 5(6), 519-+.
Sierzchula, W., Bakker, S., Maat, K., & van Wee, B. (2014). The influence of financial incentives and other socio-economic factors on electric vehicle adoption. Energy Policy, 68, 183-194.
Sipes, K., & Mendelsohn, R. (2001). The effectiveness of gasoline taxation to manage air pollution. Ecological Economics, 36, 299-309.
Sovacool, B. K., & Hirsh, R. F. (2009). Beyond batteries: An examination of the benefits and barriers to plug-in hybrid electric vehicles (PHEVs) and a vehicle-to-grid (V2G) transition. Energy Policy, 37(3), 1095-1103.
Stern, N. (2007). The Economics of Climate Change: The Stern Review. Popul Dev Rev, 32.
Thies, C., Kieckhafer, K., & Spengler, T. S. (2016). Market introduction strategies for alternative powertrains in long-range passenger cars under competition. Transportation Research Part D-transport and Environment, 45, 4-27.
Train, K. (1980). THE POTENTIAL MARKET FOR NON-GASOLINE-POWERED AUTOMOBILES. Transportation Research Part a-Policy and Practice, 14(5-6), 405-414.
Wang, N., Tang, L. H., & Pan, H. Z. (2017). Effectiveness of policy incentives on electric vehicle acceptance in China: A discrete choice analysis. Transportation Research Part a-Policy and Practice, 105, 210-218.
Wang, N., Tang, L. H., & Pan, H. Z. (2019). A global comparison and assessment of incentive policy on electric vehicle promotion. Sustainable Cities and Society, 44, 597-603.
West, S. E. (2004). Distributional effects of alternative vehicle pollution control policies. Journal of Public Economics, 88(3), 735-757.
Wu, J. H., Wu, C. W., Lee, C. T., & Lee, H. J. (2015). Green purchase intentions: An exploratory study of the Taiwanese electric motorcycle market. Journal of Business Research, 68(4), 829-833.
Zubaryeva, A., Thiel, C., Barbone, E., & Mercier, A. (2012). Assessing factors for the identification of potential lead markets for electrified vehicles in Europe: expert opinion elicitation. Technological Forecasting and Social Change, 79(9), 1622-1637.
陳彥仲(1997)。住宅選擇之程序性決策模式。住宅學報,24(2),193-209。
湯京平、廖坤榮(2004)。科技政策與民主化:台灣發展電動機車經驗的政治
經濟分析。公共行政學報,(11), 1-34。
段良雄、王郁珍(1999)。整合顯示性偏好與敘述性偏好數據的運具選擇模式。
運輸計劃季刊,28(1),25-59。
劉安錫、徐光蓉(2006)。電動機車政策之效益評估。環境保護,29(1),57-69。
楊志文(2007)。應用整合性選擇模型探討新運具的選擇行為。運輸計劃季刊,
36(2),183-207。
賴筱婷(2007)。建構汽機車傳統車型及替代能源車型之顯示性與陳述性偏好整
合選擇模式(碩士論文)。國立交通大學運輸科技與管理學系 。
陳政瑋(2008)。油價變動對小客車使用者運具使用態度與行為改變傾向之影響
研究(碩士論文)。國立交通大學運輸科技與管理學系 。
葉文雅(2008)。高鐵價格促銷方案對小汽車駕駛運具選擇行為之影響(碩士論文)。
國立交通大學交通運輸研究所 。
邱俊欽 (2010)。都市運輸之永續發展─以油價管制與運具選擇為例 (碩士論文)。
國立高雄第一科技大學運籌管理所。
陳宛宜(2010)。消費者購買環保電動機車屬性偏好之研究(碩士論文)。國立成功
大學交通管理所。
郭柏成(2010)。台灣電動機車的消費者購買行為之研究(碩士論文)。國立成功大
學經營管理碩士學程。
鄭宇倫(2013)。影響民眾購買電動機車關鍵因素之研究(碩士論文)。國立中央大
學土木工程學系。
尤浚達、胡均立(2015)。電動機車在澎湖地區推動之關鍵成功因素分析。綠色
經濟期刊,1,17-35。
周宜德、曾振南、陳中邦(2018)。台灣電動車產業政策與推廣措施之探討。石
油季刊,54(3),23-36。
黃建智(2015)。使用者對於新能源機車偏好之初探(碩士論文)。國立成功大學都
市計劃所。
劉紹寬(2017)電動機車換電站密度對購車者選擇意願之影響—以台南都會區為
例(碩士論文)。 國立成功大學都市計劃所。
莊寶鵰、陳冠宇、羅文君(2018)。顧客體驗價值對於智慧電動機車購買意願之
影響。管理資訊計算,7, 149-158。
張乃瑄、温蓓章(2019)。我國電動機車產業現況與迎戰國際競爭策略。經濟前
瞻,183,84-88。
李婕漪、葉智丞(2020)。大學生購買電動機車行為之研究-以Gogoro為例。危
機管理學刊,17(2),101-110。
中華經濟研究院(2009)。綠色稅制之研究。蕭代基。
經濟部工業局(2018)。電動機車產業發展推動計畫。
交通部運輸研究所(2018)。汽車燃料使用費徵收制度。
交通部統計處(2019)。機車調查報告。
經濟部溫室氣體減量管理推動辦公室(2020)。挪威電動稅制及其成係研析。
國家發展委員會(2022)。台灣2050淨零排放路徑及策略總說明。
行政院環保署(2019)。年度排放推估統計資料。
https://stat.motc.gov.tw/mocdb/stmain.jsp?sys=100&funid=a3301
經濟部能源局(2019)。車輛油耗資料。
https://www.moeaboe.gov.tw/ECW/populace/content/wfrmStatistics.aspx?type=5&menu_id=1303
交通部統計資訊網(2020)。機動車輛登記數。https://stat.motc.gov.tw/mocdb/stmain.jsp?sys=100&funid=a3301
經濟部工業局(2020)。電動機車補助資訊。
https://www.lev.org.tw/subsidy/city
經濟部能源局(2021)。車輛油耗指南。
https://www.moeaboe.gov.tw/ECW/populace/content/wfrmStatistics.aspx?type=5&menu_id=1303
交通部公路總局(2022)。機車燃料費費率。
https://www.thb.gov.tw/page?node=b58eb9aa-3160-429b-af08-645d5ae19f4