| 研究生: |
饒逢書 Jao, Fong-Shu |
|---|---|
| 論文名稱: |
適用於土石流地聲監測之光纖干涉儀之研發 Development of a Fiber Optic Interferometer for Detecting the Ground Vibrations of Debris Flows |
| 指導教授: |
黃清哲
Huang, Ching-Jer |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 134 |
| 中文關鍵詞: | 光纖感測器 、桑克干涉儀 、土石流 、地聲 、地聲檢知器 |
| 外文關鍵詞: | ground vibration, debris flow, geophone, Sagnac interferometer, fiber optic sensor |
| 相關次數: | 點閱:163 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要目的為利用桑克干涉儀(Sagnac intereometer)的原理,發展光纖感測器(fiber optic sensor)量測土石流發生時所造成的地表振動(ground vibration),或稱為地聲(underground sound)。光纖感測器的元件包含光源單元、感測單元及訊號處理單元;感測單元中含一繞軸式光纖地聲感測裝置。在完成光纖量測系統的架構後,本研究先於實驗室中以此設備量測石頭撞擊礫石底床所產生的地聲,並與一般常用的地聲檢知器(geophone)所量測到的結果比較。在確定光纖感測器的可信度之後,本研究於雲林縣華山土石流示範觀測站之河床,同時以光纖感測器及地聲檢知器量測石頭撞擊河床所產生的地聲。量測結果顯示光纖感測器所感測到的地聲頻率範圍與地聲檢知器的結果一致,且地聲的尖峰頻率相同,因此證實此一感測器的開發成功。
The purpose of this project is to develop a fiber optic sensor for detecting the ground vibrations produced by debris flows, based on the Sagnac interferometer. The ground vibration is sometimes called underground sound. The fiber optic sensor consists of a laser source unit, a sensing unit, and a signal processing unit. The sensing unit contains a vibration sensitized fiber optic coil for detecting the ground vibration. The fiber optic sensor was tested first in the laboratory by applying it to measure the ground vibrations produced by a rock hitting the gravel bed. This ground vibration signal was compared with those detected by a geophone, which has been widely used to measure the ground vibration. Comparison of these signals verified the capability of the new devised fiber optic sensor. The fiber optic sensor and the geophone were then installed at a river bed, where the Hua-Shan Debris Flow Monitoring Station locates, to detect simultaneously the ground vibrations produced by the impact of rocks upon the river bed. Comparison of the ground vibration signals obtained from these two instruments shows that frequency range of the signals are the same, and the peak frequency in both signals are quite similarity.
1.A. D. Kersey, ‘‘A Review of Recent Developments in Fiber Optic Sensor Technology’’ Optical Fiber Technology 2, pp.291-317, 1996.
2.Arattano, M., ‘‘Monitoring the presence of the debris-flow front and its velocity through ground vibration detectors,’’ The Third Int. Conf. on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assesment, Switzerland, pp. 719-730, 2003.
3.Francis T. S. Yu, Shizhuo Yin, ‘‘Fiber Optic Sensors,’’ CRC Press, 2002.
4.Friedlander, B. and B. Porat, “Detection of transient signals by the Gabor representation,” IEEE Trans. Acoust., Speech, Signal Processing, Vol. 37, No. 2, pp. 169-180, 1989.
5.Friedlander, B. and A. Zeira, “Over-sampled Gabor representation for transient signals,” IEEE Trans. Signal Processing, Vol. 43, No. 9, pp. 2088-2094, 1995.
6.Gabor, D., “Theory of communication,” J. Inst. Electr. Eng., Vol. 93, pp. 429-459, 1946.
7.G. D. Peng, P. L. Chu, ‘‘Fiber Optic Sensors: Optical Fiber Hydrophone Systems,’’ CRC Press, New York, pp. 417-447, 2002.
8.Huang, C. J., Shieh, C. L., and Yin, H. Y., “Laboratory study of the underground sound generated by debris flows,” J. Geophys. Res., 109, F01008, doi:10.1029/2003JF000048, pp. 1-11, 2004.
9.Huang, C. J., Yin, H. Y., Chen, C. Y., Yeh, C. H., Wang, C. L., “Ground vibrations produced by rock motions and debris flows,” J. Geophys. Res., Vol. 112, F02014, doi:10.1029/2005JF000437, pp. 1-20, 2007.
10.Hrlimann, M., D. Rickenmann, and C. Graf, ‘‘Field and monitoring data of debris-flow events in the Swiss Alps,’’ Can. Geotech. J., Vol. 40, pp. 161-175, 2003.
11.Itakura, Y., N. Kamei, J. I. Takahama., and Y. Nowa, ‘‘Real time estimation of discharge of debris flow by an acoustic sensor,’’ 14th IMEKO World Congress, New Measurements – Challenges and Visions, Tampere, Finland, Vol. XA, pp. 127-131, 1997 a.
12.Itakura, Y., Y. Koga, J. I. Takahama, and Y. Nowa, ‘‘Acoustic detection sensor for debris flow,’’ The First Int. Conf. on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assesment, San Francisco, U.S.A., pp. 747-756, 1997 b.
13.Itakura, Y., N. Fujii and T. Sawada, ‘‘Basic characteristics of ground vibration sensors for the detection of debris flow,’’ Phys. Chem. Earth (B), Vol. 25, No. 9, pp. 717-720, 2000 a.
14.Itakura, Y., T., kitajima, K. Endo, and T. Sawada, ‘‘A new double-axes accelerometer debris-flow detection system,’’ The Second Int. Conf. on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assesment, Rotterdam, pp. 319-324, 2000 b.
15.Johnson, A. M. and J. R. Rodine, “Debris flow,” Slope Instability, pp.257-361, 1984.
16.Lee, B., “Review of the present status of optical fiber sensors,” Optical Fiber Technology, Vol. 9, pp. 57-79, 2003.
17.M.K. Barnoski, S.M. Jensen, ‘‘Fiber waveguides: a novel technique for investigating attenuation characteristics,’’ Appl. Opt. 15, pp. 2112–2115. 1976.
18.Okuda, S., K. Okunishi, and H. Suwa, ‘‘Observation of debris flow at Kamikamihori Valley of Mt. Yakedade,’’ Excursion Guide-book of the 3rd Meeting of IGU commission on field experiment in geomorphology, Disaster Prevention Research Institute, Kyoto University, Japan, pp. 127-130, 1980.
19.P. B. Ruffin, ‘‘Fiber Optic Sensors: Fiber Gyroscope Sensors,” CRC Press, New York, pp. 383-415, 2002.
20.Shearer, P. M., “Introduction to seismology,” Cambridge University Press, 1999.
21.Suwa, H., Yamakoshi, T., and K. Sato, K., ‘‘Relationship between Debris-Flow discharge and ground vibration’’ The Second Int. Conf. on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assesment, Rotterdam, pp. 311-318, 2000.
22.T. S. Jang, S. S. Lee, Y. G. Kim, ‘‘Surface-bonded fiber optic Sagnac sensors for ultrasound detection’’ Ultrasonics 42, pp. 837-841, 2004
23.Udd, E. “Fiber Optic Sensors,” John Wiley and Sons Inc., New York, 1991.
24.Udd, E. “Fiber Optic Sensors: Overview of Fiber Optic Sensors,” CRC Press, New York, pp. 1-39, 2002.
25.山下真司 著,白中和 譯,「圖解光纖通信原理與最新應用技術」,建興文化事業有限公司,2004。
26.尹孝元、黃清哲、連惠邦、李秉乾、周天穎、王晉倫,「自動化土石流觀測系統之發展及應用」,中華水土保持學報,第37卷,第2期,第91-109頁,2006。
27.尹孝元、連榮吉、黃清哲、李秉乾,「台灣地區土石流現場觀測技術發展現況」,地工技術,第110期(土石流防治專輯),第65-76頁,2006。
28.尹孝元,「土石流造成地表振動之觀測與研究」,國立成功大學水利及海洋研究所博士論文(英文),2005。
29.台灣水土保持局及中華水土保持學會,「水土保持手冊」,1992。
30.吳積善、康志成、田連權,「雲南蔣家溝泥石流觀測研究」,北京,科學出版社,1990。
31.吳子偉,「干涉式光纖水中聽音器之構型分析」,國立中山大學通訊工程研究所碩士論文,2004。
32.高橋保,「橫跨土石流潛勢區域之橋樑工程問題」,土木工程防災系列研習會論文集,中央大學土木系橋樑工程研究中心,1997。
33.陳精日、章書成、葉明富,「泥石流地聲特性及NJ-2型無線遙測泥石流警報器的研製」,第二屆全國泥石流學術會議論文集(中國),第36-41頁,1991。
34.黃清哲、謝正倫、鄭友誠、尹孝元、許世盛、蔡玫諼,「土石流地聲特性之實驗研究」,中國土木水利工程學刊,第16卷,第1期,第53-63頁,2004。
35.黃清哲、葉智惠、尹孝元、王晉倫,「地聲探測器應用於土石流監測之研究」,中華水土保持學報,第36卷,第1期,第39-53頁,2005。
36.黃清哲、張順添、尹孝元、葉智惠、王晉倫「2004年七月二日神木村土石流地聲特性之分析」,中華水土保持學報,第38卷,第1期,第1-16頁,2007。
37.劉格非、李欣輯,「地聲探測器之初步研究」,第二屆土石流研討會論文,第84-93頁,1999。
38.劉格非、李欣輯,「地聲探測器之應用」,第二屆海峽兩岸山地災害與環境保育學術研討會,第161-169頁,2000。
39.(蘇) B. C. 斯捷潘諾夫著,孟河清譯「泥石流與泥石流體的基本特性及其量測方法」,科學技術文獻出版社重慶分社,1986。