簡易檢索 / 詳目顯示

研究生: 楊佩姍
Yang, Pei-Shan
論文名稱: T細胞中Rab37以胞吐作用調控chitinase 3-like 1蛋白分泌進而促使肺癌進程
Rab37 mediates exocytosis of chitinase 3-like 1 in T cells to promote lung cancer progression
指導教授: 王憶卿
Wang, Yi-Ching
學位類別: 碩士
Master
系所名稱: 醫學院 - 藥理學研究所
Department of Pharmacology
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 83
中文關鍵詞: 肺癌Rab37CHI3L1胞吐作用中和抗體抗腫瘤小鼠模式
外文關鍵詞: Lung cancer, Rab37, CHI3L1, exocytosis, neutralizing antibody, anti-tumor allograft model
相關次數: 點閱:64下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 研究背景: 許多證據顯示Rab small GTPase調控胞吐作用 (exocytosis) 的異常參與癌化過程。本研究室未發表數據顯示全身性Rab37基因剔除 (knockout) 小鼠與野生 (wild-type) 小鼠的脾臟CD8 T細胞培養液 (conditioned media),以細胞激素以及趨化激素晶片 (cytokines/ chemokines array) 分析發現,chitinase 3-like 1 (CHI3L1, 類幾丁質3) 的分泌量與Rab37的表現量具有關聯性。T細胞中的CHI3L1已被揭露能誘導黑素瘤的肺部轉移;然而,T細胞中CHI3L1的運輸模式從未被探究過。
    研究目的: 本研究旨在鑒定T細胞是否以Rab37調控CHI3L1的胞吐作用以促進肺癌進展,並研究針對以Rab37 / CHI3L1為主軸的治療價值性。
    研究結果: 我們的ELISA結果證實,與Rab37野生小鼠組相比,在Rab37剔除小鼠組的脾臟中CD4和CD8 T細胞的CHI3L1分泌量都降低。為了研究Rab37是否參與CHI3L1的胞吐作用,我們檢測了過度表現Rab37野生型、與GTP結合的活化態Q89L和與GDP結合的非活化態T43N的Jurkat T細胞培養液中CHI3L1的含量,結果顯示,這些由Jurkat T細胞收集的培養液證實Rab37以GTPase活性模式調控CHI3L1的分泌,此結果也透過胞內Rab37專一性囊泡的分離法和全反射倒立螢光顯像進一步被證實;此外,我們透過共軛焦顯微鏡在Jurkat T細胞和體外培養的脾臟CD8 T細胞以及活體內浸潤到肺癌腫瘤的T細胞中,發現Rab37和CHI3L1的共定位現象 (colocalization)。再者,我們發現血漿 (plasma) 中CHI3L1含量高的肺癌病患具有較低生存率的關聯性。為了探討CHI3L1是否適合作為治療性靶標,我們開發了中和CHI3L1的抗體藥物,我們證實了中和CHI3L1的抗體藥物抑制了肺癌細胞中AKT的活化;重要的是,在肺癌同種移植的小鼠模式中,我們更進一步驗證了這個抗體在沒有血清生化與器官毒性的情況下減緩了腫瘤生長。
    研究結論:本研究首次證明T細胞中Rab37調控CHI3L1的分泌,並且抑制Rab37 / CHI3L1軸線的促腫瘤功能具有治療的重要性。

    Background: Accumulating evidence indicates implication of Rab small GTPase-mediated exocytosis in tumorigenesis. We have established whole body Rab37 knockout (KO) mice model. The cytokine/chemokine profiles of conditioned media (CM) derived from wild-type (WT) or Rab37 KO mice revealed that the secreted level of chitinase 3-like 1 (CHI3L1) correlated with Rab37 expression in splenic CD8+ T cells. CHI3L1 in T cells has been shown to induce melanoma lung metastasis. However, the trafficking mode of CHI3L1 in T cells has never been studied.
    Purpose: This study aims to determine whether Rab37-mediated exocytosis of CHI3L1 in T cells plays a promoting role in lung cancer progression and to investigate the treatment value of targeting Rab37/CHI3L1 axis.
    Results: Our ELISA results confirmed that secreted level of CHI3L1 decreased in both splenic CD4+ and CD8+ T cells from Rab37 KO mice compared to WT mice group. To investigate whether Rab37 was involved in CHI3L1 exocytosis, we examined the presence of CHI3L1 in the CM from Rab37 wild-type, constitutive active GTP-bound Q89L and dominant negative GDP-bound T43N overexpressing Jurkat T cell lines. Notably, the collected CM from Jurkat T cell lines manipulated for Rab37 showed the secretion of CHI3L1 via Rab37 in a GTPase-dependent manner, which was further confirmed by Rab37-specific vesicle isolation and total internal reflection fluorescence images. In addition, we revealed the colocalization of Rab37 and CHI3L1 in Jurkat T cell line and ex vivo cultured splenic CD8+ T cells as well as in vivo infiltrated T cells from syngeneic orthotopic Lewis lung carcinoma (LLC) tumors by confocal microscopy. Furthermore, we found that higher CHI3L1 concentration in the plasma associated with poor survival in lung cancer patients. To validate CHI3L1 as a therapeutic target, we developed an anti-CHI3L1 neutralized antibody. We demonstrated that neutralized CHI3L1 antibody inhibited AKT activation in the lung cancer cells. Importantly, we further confirmed that this antibody suppressed the tumor growth in the mice implanted with LLC allografts without serum biochemical and organ toxicity.
    Conclusion: These results provide first evidence that Rab37 mediates CHI3L1 secretion in T cells and tumor promoting function of Rab37/CHI3L1 axis in T cells may possess the therapeutic implications.

    CONTENTS Introduction 1 I. Lung cancer 1 (a) Epidemiology of lung cancer 1 (b) Therapeutic strategies in lung cancer 1 II. Tumor immune microenvironment 3 (a) Role of immune cells in tumor microenvironment 3 (b) Role of chitinase 3-like 1 in tumor microenvironment 4 III. Chitinase 3-like 1 (CHI3L1) signaling in promoting tumorigenesis 5 (a) CHI3L1 receptor on cancer cells 5 (b) CHI3L1 signaling in cancer cells 6 (c) CHI3L1 expression in tumor microenvironmental cells 6 IV. Rab GTPases in vesicle trafficking 7 (a) Oncogenic Rab GTPases 7 (b) Tumor suppressor Rab GTPases 8 (c) Role of Rab37 mediated-exocytosis in tumor progression 9 Study basis and specific aims 11 Materials and methods 13 I. Animal studies 13 II. Cell lines, splenic T cell isolation and culture condition 14 III. Plasmid, RNAi and transfection 16 IV. Cytokine and chemokine array 16 V. Vesicle isolation and immunoprecipitation 17 VI. Enzyme-linked immunosorbent assay 17 VII. Conditioned media collection 18 VIII. Western blot analysis 18 IX. Confocal microscopy 19 X. Total internal reflection fluorescence microscopy 19 XI. Immunohistochemistry assay (IHC) and immunofluorescence-IHC 20 XII. Flow cytometry 21 XIII. RNA extraction and quantitative reverse transcriptase polymerase chain reaction assay 22 XIV. Patient recruitment and analyses 23 XV. Statistical analysis 23 Results 24 I. Rab37-mediated exocytosis promoted CHI3L1 secretion in T cells 25 (a) Cytokine and chemokine array of splenic T cells from Rab37 wild-type and knockout mice identified cargo candidates of Rab37 25 (b) CHI3L1 was a cargo of Rab37-mediated exocytosis in T cells regulated in a GTP-dependent manner 26 (c) Rab37-mediated CHI3L1 secretion induced AKT phosphorylation in cancer cells 28 II. CHI3L1-neutralizing antibody treatment improved the therapeutic efficacy to inhibit tumor growth 29 (a) CHI3L1-neutralizing antibody treatment inhibited AKT phosphorylation in cancer cells in vitro 29 (b) CHI3L1-neutralizing antibody treatment inhibited tumor growth in subcutaneous model in vivo 30 (c) CHI3L1-neutralizing antibody treatment inhibited tumor growth and tumor metastases in orthotopic model in vivo 31 (d) Rab37 protein expression positively correlated with CHI3L1 level in LLC allograft tumor specimens in vivo 32 III. High CHI3L1 expression in plasma samples or tumor specimens predicted poor prognosis of lung cancer patients 33 (a) High plasma CHI3L1 level predicted poor prognosis of lung cancer patients 33 (b) Concordantly high expression of Rab37 and CHI3L1 in T cells of tumor specimens 34 Discussion 35 References 39 Tables 48 Figures 55 Appendix Figures and Table 76   TABLE CONTENTS Table 1. The plasmids and their characteristics used in the current study 49 Table 2. The antibodies and their reaction conditions used in the current study 50 Table 3. The primers used in the current study 52 Table 4. Alteration of CHI3L1 protein expression in relation to clinicopathological parameters in 161 lung cancer patients’ plasma samples 53 Table 5. Cox regression analysis of risk factors for cancer-related death in lung cancer patients 54   FIGURE CONTENTS Figure 1. Cytokine/chemokine array identified CHI3L1 as a cargo candidate of Rab37 in T cells 56 Figure 2. Rab37 knockout mice derived T cells reduced CHI3L1 secretion 57 Figure 3. Identification and validation of CHI3L1 cargo secretion in Rab37-specific vesicles and conditioned media 58 Figure 4. Rab37 mediated CHI3L1 trafficking and exocytosis in T cells in a GTP-dependent manner 60 Figure 5. Examination of the binding affinity and function of recombinant CHI3L1 (rCHI3L1) protein in H1299 cells 62 Figure 6. Blockade of CHI3L1 using neutralizing CHI3L1 antibody attenuated the effect of rCHI3L1 protein on H1299 cells 64 Figure 7. CHI3L1-neutralizing antibody treatment inhibited tumor growth in subcutaneous model in vivo 66 Figure 8. CHI3L1-neutralizing antibody treatment inhibited tumor growth in orthotopic model in vivo 69 Figure 9. Plasma CHI3L1 level served as a prognosis biomarker of lung cancer patients 72 Figure 10. Correlation between Rab37 and CHI3L1 expression in lung cancer patients 73 Figure 11. The schematic model of Rab37 / CHI3L1 axis in infiltrated T cells in regulation of tumor growth of lung cancer 75   APPENDIX CONTENTS Appendix Figure 1. How tumor genotypes and phenotypes shape the tumor immune microenvironment 77 Appendix Figure 2. Binding of CHI3L1 and IL-13Rα2 78 Appendix Figure 3. The CHI3L1 / CD44-IL-13Rα2 signaling pathway 79 Appendix Figure 4. Activation of CHI3L1 signaling in cancer development 80 Appendix Figure 5. CHI3L1 drives an immunosuppressive and growth promoting microenvironment 81 Appendix Figure 6. Schematic diagram of Rab GTPase cycle 82 Appendix Table 1. CHI3L1 expression in lung cancer patient-derived samples reported in the literature 83

    Antonia SJ, López-Martin JA, Bendell J, Ott PA, Taylor M, Eder JP, Jäger D, Pietanza MC, Le DT, de Braud F, Morse MA, Ascierto PA, Horn L, Amin A, Pillai RN, Evans J, Chau I, Bono P, Atmaca A, Sharma P, Harbison CT, Lin CS, Christensen O, Calvo E (2016). Nivolumab alone and nivolumab plus ipilimumab in recurrent small-cell lung cancer (CheckMate 032): a multicentre, open-label, phase 1/2 trial. Lancet Oncol. 17(7):883-895.
    Bartolomé RA, García-Palmero I, Torres S, López-Lucendo M, Balyasnikova IV, Casal JI (2015). IL13 receptor α2 signaling requires a scaffold protein, FAM120A, to activate the FAK and PI3K pathways in colon cancer metastasis. Cancer Res. 75(12):2434-44.
    Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, Coussens LM, Gabrilovich DI, Ostrand-Rosenberg S, Hedrick CC, Vonderheide RH, Pittet MJ, Jain RK, Zou W, Howcroft TK, Woodhouse EC, Weinberg RA, Krummel MF (2018). Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 24(5):541-550.
    Brade A, MacRae R, Laurie SA, Bezjak A, Burkes R, Chu Q, Goffin JR, Cho J, Hope A, Sun A, Leighl N, Capobianco S, Feld R, Mahalingam E, Hossain A, Iscoe N, Shepherd FA (2016). Phase II study of concurrent pemetrexed, cisplatin, and radiation therapy for stage IIIA/B unresectable non-small cell lung cancer. Clin Lung Cancer. 17(2):133-41.
    Bray, F., J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre and A. Jemal (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68(6): 394-424.
    Carbone DP, Reck M, Paz-Ares L, Creelan B, Horn L, Steins M, Felip E, van den Heuvel MM, Ciuleanu TE, Badin F, Ready N, Hiltermann TJN, Nair S, Juergens R, Peters S, Minenza E, Wrangle JM, Rodriguez-Abreu D, Borghaei H, Blumenschein GR Jr, Villaruz LC, Havel L, Krejci J, Corral Jaime J, Chang H, Geese WJ, Bhagavatheeswaran P, Chen AC, Socinski MA; CheckMate 026 Investigators (2017). First-line Nivolumab in stage IV or recurrent non-small-cell lung cancer. N Engl J Med. 376(25):2415-2426.
    Cho SH, Kuo IY, Lu PJ, Tzeng HT, Lai WW, Su WC, Wang YC (2018). Rab37 mediates exocytosis of secreted frizzled-related protein 1 to inhibit Wnt signaling and thus suppress lung cancer stemness. Cell Death Dis. 9(9):868.
    Choi IK, Kim YH, Kim JS, Seo JH (2010). High serum YKL-40 is a poor prognostic marker in patients with advanced non-small cell lung cancer. Acta Oncol. 49(6):861-4.
    Cohen N, Shani O, Raz Y, Sharon Y, Hoffman D, Abramovitz L, Erez N (2017). Fibroblasts drive an immunosuppressive and growth-promoting microenvironment in breast cancer via secretion of Chitinase 3-like 1. Oncogene. 36(31):4457-4468.
    Dela Cruz CS, Liu W , He CH, Jacoby A, Gornitzky A, Ma B, Flavell R, Lee CG, Elias JA (2012). Chitinase 3-like-1 promotes Streptococcus pneumoniae killing and augments host tolerance to lung antibacterial responses. Cell Host Microbe. 12(1):34-46.
    DuPage M, Cheung AF, Mazumdar C, Winslow MM, Bronson R, Schmidt LM, Crowley D, Chen J, Jacks T (2011). Endogenous T cell responses to antigens expressed in lung adenocarcinomas delay malignant tumor progression. Cancer Cell. 19(1):72-85.
    Faibish M1, Francescone R, Bentley B, Yan W, Shao R (2011). A YKL-40-neutralizing antibody blocks tumor angiogenesis and progression: a potential therapeutic agent in cancers. Mol Cancer Ther. 10(5):742-51.
    Geng B, Pan J, Zhao T, Ji J, Zhang C, Che Y, Yang J, Shi H, Li J, Zhou H, Mu X, Xu C, Wang C, Xu Y, Liu Z, Wen H, You Q (2018). Chitinase 3-like 1-CD44 interaction promotes metastasis and epithelial-to-mesenchymal transition through β-catenin/Erk/AKT signaling in gastric cancer. J Exp Clin Cancer Res. 37(1):208.
    Gupta S, Jain A, Syed SN, Snodgrass RG, Pflüger-Müller B, Leisegang MS, Weigert A, Brandes RP, Ebersberger I, Brüne B, Namgaladze D (2018). IL-6 augments IL-4-induced polarization of primary human macrophages through synergy of STAT3, STAT6 and BATF transcription factors. Oncoimmunology. 7(10):e1494110.
    Hakala BE, White C, Recklies AD (1993). Human cartilage gp-39, a major secretory product of articular chondrocytes and synovial cells, is a mammalian member of a chitinase protein family. J Biol Chem. 268(34):25803-10.
    He CH, Lee CG, Dela Cruz CS, Lee CM, Zhou Y, Ahangari F, Ma B, Herzog EL, Rosenberg SA, Li Y, Nour AM, Parikh CR, Schmidt I, Modis Y, Cantley L, Elias JA (2013). Chitinase 3-like 1 regulates cellular and tissue responses via IL-13 receptor α2. Cell Rep. 4(4):830-41.
    Hellmann MD, Rizvi NA, Goldman JW, Gettinger SN, Borghaei H, Brahmer JR, Ready NE, Gerber DE, Chow LQ, Juergens RA, Shepherd FA, Laurie SA, Geese WJ, Agrawal S, Young TC, Li X, Antonia SJ (2017). Nivolumab plus ipilimumab as first-line treatment for advanced non-small-cell lung cancer (CheckMate 012): results of an open-label, phase 1, multicohort study. Lancet Oncol. 18(1):31-41.
    Hendrix A, Maynard D, Pauwels P, Braems G, Denys H, Broecke RV, Lambert J, Belle SV, Cocquyt V, Gespach C, Bracke M, Seabra MC, Gahl WA, Wever OD and Westbroek W (2010) Effect of the secretory small GTPase Rab27b on breast cancer growth, invasion, and metastasis. J Natl Cancer Inst. 102(12): 866–880
    James AJ, Reinius LE, Verhoek M, Gomes A, Kupczyk M, Hammar U1, Ono J, Ohta S, Izuhara K, Bel E, Kere J, Söderhäll C, Dahlén B2,10, Boot RG, Dahlén SE; BIOAIR (Longitudinal Assessment of Clinical Course and Biomarkers in Severe Chronic Airway Disease) Consortium (2016). Increased YKL-40 and Chitotriosidase in Asthma and Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med. 193(2):131-42.
    Johansen JS, Bojesen SE, Mylin AK, Frikke-Schmidt R, Price PA, Nordestgaard BG (2009). Elevated plasma YKL-40 predicts increased risk of gastrointestinal cancer and decreased survival after any cancer diagnosis in the general population. J Clin Oncol. 27(4):572-8.
    Johansen JS, Drivsholm L, Price PA, Christensen IJ (2004). High serum YKL-40 level in patients with small cell lung cancer is related to early death. Lung Cancer. 46(3):333-40.
    Joyce JA, Fearon DT (2015). T cell exclusion, immune privilege, and the tumor microenvironment. Science. 348(6230):74-80.
    Junker N, Johansen JS, Andersen CB, Kristjansen PE (2005). Expression of YKL-40 by peritumoral macrophages in human small cell lung cancer. Lung Cancer. 48(2):223-31.
    Kajiho H, Kajiho Y, Frittoli E, Confalonieri S, Bertalot G, Viale G, Di Fiore PP, Oldani A, Garre M, Beznoussenko GV, Palamidessi A, Vecchi M6, Chavrier P, Perez F7, Scita G (2016). RAB2A controls MT1-MMP endocytic and E-cadherin polarized Golgi trafficking to promote invasive breast cancer programs. EMBO Rep. 17(7):1061-80.
    Kzhyshkowska J, Yin S, Liu T, Riabov V, Mitrofanova I. (2016). Role of chitinase-like proteins in cancer. Biol Chem. 397(3):231-47.
    Lee CG, Hartl D, Lee GR, Koller B, Matsuura H, Da Silva CA, Sohn MH, Cohn L, Homer RJ, Kozhich AA, Humbles A, Kearley J, Coyle A, Chupp G, Reed J, Flavell RA, Elias JA (2009). Role of breast regression protein 39 (BRP-39)/chitinase 3-like-1 in Th2 and IL-13-induced tissue responses and apoptosis. J Exp Med. 206(5):1149-66.
    Lee CM, He CH, Nour AM1, Zhou Y, Ma B, Park JW, Kim KH, Dela Cruz C, Sharma L, Nasr ML, Modis Y, Lee CG, Elias JA (2016). IL-13Rα2 uses TMEM219 in chitinase 3-like-1-induced signalling and effector responses. Nat Commun. 7:12752.
    Libreros S, Iragavarapu-Charyulu V (2015). YKL-40/CHI3L1 drives inflammation on the road of tumor progression. J Leukoc Biol. 98(6):931-6.
    Lupardus PJ, Birnbaum ME, Garcia KC (2010). Molecular basis for shared cytokine recognition revealed in the structure of an unusually high affinity complex between IL-13 and IL-13Ralpha2. Structure. 18(3):332-42.
    Ma B, Herzog EL, Lee CG, Peng X, Lee CM, Chen X, Rockwell S, Koo JS, Kluger H, Herbst RS, Sznol M, Elias JA (2014). Role of chitinase 3-like-1 and semaphoring 7a in pulmonary melanoma metastasis. Cancer Res. 75(3):487-96.
    Matsushita H, Vesely MD, Koboldt DC, Rickert CG, Uppaluri R, Magrini VJ, Arthur CD, White JM, Chen YS, Shea LK, Hundal J, Wendl MC, Demeter R, Wylie T, Allison JP, Smyth MJ, Old LJ, Mardis ER, Schreiber RD (2012). Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature. 482(7385):400-4.
    Nam KT, Lee HJ, Smith JJ, Lapierre LA, Kamath VP, Chen X, Aronow BJ, Yeatman TJ, Bhartur SG, Calhoun BC, Condie B, Manley NR, Beauchamp RD, Coffey RJ, Goldenring JR. Loss of Rab25 promotes the development of intestinal neoplasia in mice and is associated with human colorectal adenocarcinomas. J Clin Invest. 2010;120(3):840-9.
    Nyirkos P, Golds EE (1990). Human synovial cells secrete a 39 kDa protein similar to a bovine mammary protein expressed during the non-lactating period. Biochem J. 269(1):265-8.
    Osmani L, Askin F, Gabrielson E, Li QK (2018). Current WHO guidelines and the critical role of immunohistochemical markers in the subclassification of non-small cell lung carcinoma (NSCLC): Moving from targeted therapy to immunotherapy. Semin Cancer Biol. 52(Pt 1):103-109.
    Park YJ, Kuen DS, Chung Y (2018). Future prospects of immune checkpoint blockade in cancer: from response prediction to overcoming resistance. Exp Mol Med. 50(8):109.
    Pylayeva-Gupta Y, Lee KE, Hajdu CH, Miller G, Bar-Sagi D (2012). Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia. Cancer Cell. 21(6):836-47.
    Qian BZ, Pollard JW (2010). Macrophage diversity enhances tumor progression and metastasis. Cell. 141(1):39-51.
    Qureshi OS, Zheng Y, Nakamura K, Attridge K, Manzotti C, Schmidt EM, Baker J, Jeffery LE, Kaur S, Briggs Z, Hou TZ, Futter CE, Anderson G, Walker LS, Sansom DM (2011). Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science. 332(6029):600-3.
    Rehli M, Krause SW, Andreesen R (1997). Molecular characterization of the gene for human cartilage gp-39 (CHI3L1), a member of the chitinase protein family and marker for late stages of macrophage differentiation. Genomics. 43(2):221-5.
    Salazar MC, Rosen JE, Wang Z, Arnold BN, Thomas DC, Herbst RS, Kim AW, Detterbeck FC, Blasberg JD, Boffa DJ (2017). Association of delayed adjuvant chemotherapy with survival after lung cancer surgery. JAMA Oncol. 3(5):610-619.
    Schadendorf D, Hodi FS, Robert C, Weber JS, Margolin K, Hamid O, Patt D, Chen TT, Berman DM, Wolchok JD (2015). Pooled analysis of long-term survival data from phase II and phase III trials of Ipilimumab in unresectable or metastatic melanoma. J Clin Oncol. 33(17):1889-94.
    Sohn MH, Kang MJ, Matsuura H, Bhandari V, Chen NY, Lee CG, Elias JA (2010). The chitinase-like proteins breast regression protein-39 and YKL-40 regulate hyperoxia-induced acute lung injury. Am J Respir Crit Care Med. 182(7):918-28.
    Subramani D, Alahari SK (2010). Integrin-mediated function of Rab GTPases in cancer progression. Mol Cancer. 9:312.
    Subramaniam R, Mizoguchi A, Mizoguchi E (2016). Mechanistic roles of epithelial and immune cell signaling during the development of colitis-associated cancer. Cancer Res Front. 2(1):1-21.
    Sumimoto H, Imabayashi F, Iwata T, Kawakami Y (2006). The BRAF-MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. J Exp Med. 203(7):1651-6.
    Taiwan Ministry of Health and Welfare (2017) General Health Statistics. https://dep.mohw.gov.tw/DOS/cp-3960-41756-113.html
    Thöm I, Andritzky B, Schuch G, Burkholder I, Edler L, Johansen JS, Bokemeyer C, Schumacher U, Laack E (2010). Elevated pretreatment serum concentration of YKL-40 An independent prognostic biomarker for poor survival in patients with metastatic nonsmall cell lung cancer. Cancer. 116(17):4114-21.
    Tong M, Chan KW, Bao JY, Wong KY, Chen JN, Kwan PS, Tang KH, Fu L, Qin YR, Lok S, Guan XY, Ma S (2012). Rab25 is a tumor suppressor gene with antiangiogenic and anti-invasive activities in esophageal squamous cell carcinoma. Cancer Res. 72(22):6024-35.
    Travis WD, Brambilla E, Noguchi M, Nicholson AG, Geisinger KR, Yatabe Y, Beer DG, Powell CA, Riely GJ, Van Schil PE, Garg K, Austin JH, Asamura H, Rusch VW, Hirsch FR, Scagliotti G, Mitsudomi T, Huber RM, Ishikawa Y, Jett J, Sanchez-Cespedes M, Sculier JP, Takahashi T, Tsuboi M, Vansteenkiste J, Wistuba I, Yang PC, Aberle D, Brambilla C, Flieder D, Franklin W, Gazdar A, Gould M, Hasleton P, Henderson D, Johnson B, Johnson D, Kerr K, Kuriyama K, Lee JS, Miller VA, Petersen I, Roggli V, Rosell R, Saijo N, Thunnissen E, Tsao M, Yankelewitz D (2011). International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol. 6(2):244-85.
    Tricker EM, Xu C, Uddin S, Capelletti M, Ercan D, Ogino A, Pratilas CA, Rosen N, Gray NS, Wong KK, Jänne PA. (2015) Combined EGFR/MEK inhibition prevents the emergence of resistance in EGFR-mutant lung cancer. Cancer Discov. 5(9):960-971
    Tsai CH, Cheng HC, Wang YS, Lin P, Jen J, Kuo IY, Chang YH, Liao PC, Chen RH, Yuan WC, Hsu HS, Yang MH, Hsu MT, Wu CY, Wang YC (2014) Small GTPase Rab37 targets tissue inhibitor of metalloproteinase 1 for exocytosis and thus suppresses tumour metastasis. Nat Commun. 5:4804.
    Tzeng HT, Su CC, Chang CP, Lai WW, Su WC, Wang YC (2018). Rab37 in lung cancer mediates exocytosis of soluble ST2 and thus skews macrophages toward tumor-suppressing phenotype. Int J Cancer. 143:1753-1763.
    Tzeng HT, Tsai CH, Yen YT, Cheng HC, Chen YC, Pu SW, Wang YS, Shan YS, Tseng YL, Su WC, Lai WW, Wu LW, Wang YC (2017) Dysregulation of Rab37-mediated cross-talk between cancer cells and endothelial cells via thrombospondin-1 promotes tumor neovasculature and metastasis. Clin Cancer Res. 23(9):2335-2345.
    von Thun A, Birtwistle M, Kalna G, Grindlay J, Strachan D, Kolch W, von Kriegsheim A, Norman JC (2012). ERK2 drives tumour cell migration in three-dimensional microenvironments by suppressing expression of Rab17 and liprin-β2. J Cell Sci. 125(Pt 6):1465-77.
    Wang J, Sheng Z, Yang W, Cai Y (2016) Elevated serum concentration of Chitinase 3-Like 1 is an independent prognostic biomarker for poor survival in lung cancer patients. Cell Physiol Biochem 38(2):461-8.
    Wang K, Mao Z, Liu L, Zhang R, Liang Q, Xiong Y, Yuan W, Wei L (2015). Rab17 inhibits the tumourigenic properties of hepatocellular carcinomas via the Erk pathway. Tumour Biol. 36(8):5815-24.
    Wang S, Hu C, Wu F, He S (2017). Rab25 GTPase: Functional roles in cancer. Oncotarget. 8(38):64591-64599.
    Wang XW, Cai CL, Xu JM, Jin H, Xu ZY (2015). Increased expression of chitinase 3-like 1 is a prognosis marker for non-small cell lung cancer correlated with tumor angiogenesis. Tumour Biol. 36(2):901-7.
    Wheeler DB, Zoncu R, Root DE, Sabatini DM, Sawyers CL (2015). Identification of an oncogenic RAB protein. Science. 350(6257):211-7.
    Wu CY, Tseng RC, Hsu HS, Wang YC, Hsu MT (2009) Frequent down-regulation of hRAB37 in metastatic tumor by genetic and epigenetic mechanisms in lung cancer. Lung Cancer. 63(3):360-367
    Wu SG, Liu YN, Tsai MF, Chang YL, Yu CJ, Yang PC, Yang JC, Wen YF, Shih JY (2016). The mechanism of acquired resistance to irreversible EGFR tyrosine kinase inhibitor-afatinib in lung adenocarcinoma patients. Oncotarget. 7(11):12404-13.
    Xiaojuan Ai, Xialing Guo, Jun Wang, Andreea L. Stancu, Patrick M.N. Joslin, Dianzheng Zhang and Shudong Zhu (2018). Targeted therapies for advanced non-small cell lung cancer. Oncotarget. 9(101):37589-37607.
    Xie M, Wu XJ, Zhang JJ, He CS (2015). IL-13 receptor α2 is a negative prognostic factor in human lung cancer and stimulates lung cancer growth in mice. Oncotarget. 6(32):32902-13.
    Xu CH, Yu LK, Hao KK (2014). Serum YKL-40 level is associated with the chemotherapy response and prognosis of patients with small cell lung cancer. PLoS One. 9(5):e96384.
    Yang L, Dong Y, Li Y, Wang D, Liu S, Wang D, Gao Q, Ji S, Chen X Lei Q, Jiang W, Wang L, Zhang B, Yu JJ, Zhang Y (2019). IL-10 derived from M2 macrophage promotes cancer stemness via JAK1/STAT1/NF-κB/Notch1 pathway in non-small cell lung cancer. Int J Cancer. 145(4):1099-1110.
    Yokosuka T, Takamatsu M, Kobayashi-Imanishi W, Hashimoto-Tane A, Azuma M, Saito T (2012). Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med. 209(6):1201-17.
    Zhao Z, Wang L, Xu W (2015). IL-13Rα2 mediates PNR-induced migration and metastasis in ERα-negative breast cancer. Oncogene. 34(12):1596-607.
    Zhou Y, He CH, Herzog EL, Peng X, Lee CM, Nguyen TH, Gulati M, Gochuico BR, Gahl WA, Slade ML, Lee CG, Elias JA (2015). Chitinase 3-like-1 and its receptors in Hermansky-Pudlak syndrome-associated lung disease. J Clin Invest. 125(8):3178-92.
    Zhou Y, He CH, Yang DS, Nguyen T, Cao Y, Kamle S, Lee CM, Gochuico BR, Gahl WA, Shea BS, Lee CG, Elias JA (2018). Galectin-3 Interacts with the CHI3L1 axis and contributes to Hermansky-Pudlak syndrome lung disease. J Immunol. 200(6):2140-2153.

    無法下載圖示 校內:2024-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE