簡易檢索 / 詳目顯示

研究生: 廖基堯
Liao, Chi-Yao
論文名稱: 突張管內爆炸波與渦漩交互作用之數值研究
Numerical Investigation of Blast Wave/Vortex Interaction in a Duct with a Sudden Expansion
指導教授: 梁勝明
Liang, Shen-Min
學位類別: 博士
Doctor
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 237
中文關鍵詞: 繞射震波反射震波第二道震波主渦漩斜縮效應次渦漩壓縮效應
外文關鍵詞: minor vortex, major vortex, diffracted shock, reflected shock, second shock, baroclinic effect, compressibility effect
相關次數: 點閱:106下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   平面爆炸波與渦漩交互作用為研究震波動力學的基本課題。尤其是由高速飛行器所產生的噪音,以及由交通工具排氣系統所排放噪音或者內燃機的問題,都與它有密切的關聯。在本文中,我們探討了平面爆炸波與平面震波越過一楔形物,所引伸的震波反射型態課題,以及平面爆炸波在一突擴張管內傳遞的問題。本文將採用Jiang and Shu兩人五階準確度的加權基本不震盪法來探討這兩個問題。
      對平面爆炸波與平面震波越過一楔形物的問題,我們發現由平面爆炸波所產生的第一道震波,其後邊界層之生成會影響到震波反射的型態。由於爆炸波之強度隨著爆炸波的傳遞,會逐漸減弱。一般在震波反射型態上,常見的過渡馬赫反射及雙馬赫反射,在由初始壓力比為100所產生的爆炸波反射問題中,將不會被發現。在這個問題中,我們也發現到不需要其他中間轉換的過程,正規反射型態會很容易的轉換為單馬赫反射。
      對爆炸波在突張管傳遞的問題,我們將詳細探討三種震波與渦漩交互作用的問題。由第一道震波所產生的渦漩,將會被設計先後與第二道震波、反射震波做交互作用及這兩道震波同時與主渦漩交互作用。基本上,第一道震波會產生兩個主要渦漩,分別稱為主渦和次渦。這兩個主要渦漩會成對出現,並且同時伴隨移動。數值陰影法及紋影法將被應用在探討震波與渦漩交互作用的問題。我們也發現在這三個課題中,主渦中心的軌跡會受到膨脹波及在凸尖角處另一個小渦的影響。另外,流場的黏滯效應也會影響到漩渦的強度。我們發現到非黏滯性流場的渦量會比黏滯性流場來的大。由於非黏性流場之主渦中心的強度會比黏性流場來的大,相對的在非黏性流場,它主渦中心的壓力會比黏性流場來的小。沿著突張管壁上的邊界層,第一道震波在管壁交互作用後的震波反射型態,會由正規反射型態轉變為馬赫反射。這種反射型態的轉變,會影響反射震波到達凸尖角處的時間。最後,分析在非黏性流場中,渦漩生成的機制。我們發現在影響擴張項的因素,壓縮項的影響遠大於斜壓項的影響。

      The interaction of a planar blast wave with vortices is one of the fundamental and important topics in shock wave dynamics, since the problem is closely related to the aerodynamic noise generation in high-speed aircraft and the noise emitted from a vehicle’s exhaust system or an internal combustor. In this study, the problems of the planar blast-wave propagation over a wedge and of a planar blast wave discharged from a suddenly expanded duct are considered. A high-resolution Euler/Navier-Stokes solver developed by a 5th-order WENO scheme of Jiang and Shu is employed to investigate these two problems. The present Euler/Navier-Stokes solver is validated to be reasonably accurate.
      For the problem of a blast wave propagating over a wedge surface, it is found that the boundary layer developed behind the first shock wave of the planar blast wave has influence on the type of shock reflection. Because the blast-wave intensity gradually becomes weaker during propagation, a transitional Mach reflection and a double Mach reflection which may occur in the case of shock-wave reflection are not found in the blast-wave reflection at an initial pressure ratio of 100. In this case, it is found that a single Mach reflection is simply transited to a regular reflection without intermediate types of shock-wave reflections.
    For the problem of a blast wave passing through the duct with a sudden expansion, three cases of shock/vortex interactions are studied in detail. The induced vortices induced by the first shock wave are respectively arranged to interact with the second shock wave and a reflected shock wave at a different time sequence, and with both simultaneously. Basically, the first shock wave can induce two main vortices called as major and minor vortices. These two vortices form a pair and move together. In order to study the flow fields induced by the shock/vortex interactions, the computational shadowgraph and computational schlieren techniques are used. We found that the trajectory of the major vortex center may be different for these three cases, resulted from the effects of the expansion waves issuing from the sharp corner and of another small vortex. Moreover, the effects of different viscous models have influence on the induced vortex strengths. Thus the vortex strength obtained by the inviscid-flow model is stronger than those for the viscous-flow models, resulting in a lower pressure at the vortex center for the inviscid-flow case compared with the viscous case. Because of the boundary layer development along the duct wall after the sudden expansion, the first-shock reflection type is changed from a regular reflection to a single Mach reflection that can affect the arrival time of the reflected shock wave at the sharp corner. Finally, the mechanism of the vortex formation is mainly analyzed based on the inviscid-flow model. It is found that the compressibility term plays an important role in vorticity generation and that the baroclinic effect is more effective than the dilatation effect.

    CONTENTS ABSTRACT………………………………………………………………………i CONTENTS………………………………………………………………………iii LIST OF TABLES………………………………………………………………vii LIST OF FIGURES………………………………………………………………iii NOMENCLATURES ……………………………………………………………xvii CHAPTER I INTRODUCTION…………………………………………………………………1 1.1 Background……………………………………………………………………1 1.2 Literature Survey………………………………………………………………1 1.2.1 Planar Blast/Shock Wave Reflection over a wedge………………………… 1 1.2.2 Planar Blast Wave/Vortex Interaction……………………………………… 2 1.2.3 Blast Waves Discharging from a Sudden Expansion Duct………………… 6 1.3 Objectives……………………………………………………………………12 II MATHEMATICAL FORMULATION…………………………………………………………………13 2.1 Compressible Navier-Stokes Equations………………………………………13 2.2 Generalized Curvilinear Coordinates………………………………………… 15 2.3 Turbulence Model……………………………………………………………18 2.4 Vorticity Transport Equation…………………………………………………19 III NUMERICAL MEHOD…………………………………………………………22 3.1 Introduction………………………………………………………………… 22 3.2 WENO Scheme………………………………………………………………… 23 3.3 Weights of WENO scheme for Euler Systems…………………………………28 3.4 Time Discretization…………………………………………………………… 29 3.5 Choice of Time Step……………………………………………………………29  3.6 Boundary Conditions……………………………………………………… 30 3.6.1 Wall Boundary Condition……………………………………………………30 3.6.1.1 Inviscid Wall Boundary condition…………………………………………30 3.6.1.2 Viscous Wall Boundary Condition…………………………………………31 3.6.2 Symmetric Boundary Condition………………………………………………31 3.6.3 Nonreflecting Boundary Condition……………………………………………31 IV RESULTS AND DISCUSSIONS…………………………………………………33 4.1 Validation of the Numerical Method……………………………………………33 4.1.1 Case I: Shock Tube Problem…………………………………………………33 4.1.2 Case II: Laminar Shock/Boundary Layer Interaction…………………………33 4.1.3 Case III: A Planar Shock Wave Diffracted around a 90- degree Sharp Convex corner………………………………………………………34 4.1.4 Case IV: A Planar Shock Diffracted around a Suddenly Expanded Duct……34 4.1.5 Case V: A Subsonic Flow over a Flat Plate……………………………………35 4.2 Grid Selection……………………………………………………………………35 4.3 Numerical Simulation of the Blast-Wave Reflection over a Wedge……………36 4.3.1 Physical Problem………………………………………………………………36 4.3.2. Initial and Boundary Conditions……………………………………………37 4.3.3. Results and Discussion………………………………………………………37 4.3.4. Conclusions…………………………………………………………………39 4.4 CASE A : The Second Shock Interacts with the Induced Vortices before the Reflected Shock Arrival…………………………………………………39 4.4.1 Physical Problem……………………………………………………… ……40 4.4.2 Flow Structure…………………………………………………………………41 4.4.2.1 Global Flow …Field………………………………………………………42 4.4.2.2 Local Flow Field……………………………………………………………43 4.4.3 Planar Shock/Vortex Interaction………………………………………………45 4.4.4 Vorticity Production…………………………………………………………47 4.4.5 The Viscous Effects…………………………………………………………49 4.5 CASE B: The Reflected Shock and the Second Shock Simultaneously Interacting with the Induced Vortex………………………………………………52 4.5.1 Physical Problem……………………………………………………………52 4.5.2 Flow Structures………………………………………………………………52 4.5.2.1 Global Flow Field…………………………………………………………53 4.5.2.2 Local Flow Field……………………………………………………………54 4.5.3 Planar Shock/Vortex Interaction……………………………………………56 4.5.4 Vorticity Production…………………………………………………………57 4.5.5 The Viscous Effects…………………………………………………………58 4.6 CASE C: The Reflected Shock/Vortex Interaction with the Induced Vortices before the Second Shock Arrival………………………………59 4.6.1 Physical Problem……………………………………………………………59 4.6.2 Flow Structures………………………………………………………………59 4.6.2.1 Global Flow field…………………………………………………………60 4.6.2.2 Local Flow Field…………………………………………………………61 4.6.3 Planar Shock/Vortex Interaction……………………………………………63 4.6.4 Vorticity Production…………………………………………………………65 4.6.5 The Viscous Effects…………………………………………………………66 V CONCLUSIONS AND SUGGESTIONS…………………………………………………………………68 5.1 Conclusions………………………………………………………………… 68 5.2 Suggestions………………………………………………………………… 70 REFERENCES ……………………………………………………………………71 APPENDICES……………………………………………………………………79 TABLES…………………………………………………………………………83 FIGURES…………………………………………………………………………88 VITA

    [1]Abate, G. and Shyy, W., “Dynamic Structure of Confined Shocks Undergoing Sudden Expansion,” Progress in Aerospace Sciences, Vol. 38, pp. 23-42, 2002.

    [2] Aksel, M. H., Eralp, O. C., Gas Dynamics, Prentice Hall Inc., UK, 1994.

    [3] Andreopoulos, Y., Agui, J. H. and Briassulis, G., “Shock Wave-Turbulence Interactions,” Annual Review of Fluid Mechanics, Vol. 32, pp. 309-345, 2000.

    [4] Baldwin, B. and Lomax, H., “Thin-Layer Approximation and Algebraic Model for Separated Turbulent Flows,” AIAA paper 78-257, 1978.

    [5] Deschambault, R. L. and Glass, I. I., “An Update on Non-stationary Oblique Shock-wave Reflections: Actual Isopycnics and Numerical Experiments,” J. Fluid Mech., Vol. 31, pp. 27-57, 1983.

    [6] Ben-Dor, G.., Shock Wave Reflection Phenomena, Springer-Verlag New York, Inc., New York, 1992.

    [7] Ben-Dor, G and Takayama, K., “The Phenomena of Shock Wave Reflection – a Review of Unsolved Problems and Future Research Needs,” Shock Waves, Vol. 2, pp. 211-223, 1992.

    [8] Chang, S. M. and Chang, K. S., “On the Shock-Vortex interaction in Schardin’s problem,” Shock Waves, Vol. 10, pp. 333-343, 2000.

    [9] Chang, K. S. and Kim, J. K., “Numerical investigation of inviscid wave dynamics in an expansion tube,” Shock Waves, Vol. 5, pp. 33-45, 1995.

    [10] Chatterjee, A., “Shock Wave Deformation in Shock-Vortex Interactions,” Shock Waves, Vol. 9, pp. 95-105, 1999.

    [11] Chen, H. and Liang, S. M., “Planar Blast/Vortex Interaction and Sound Generation,” AIAA J., Vol. 40, No. 11, pp. 2298-2304, 2002.

    [12] Ellzey, J. L., Henneke, M. R., Picone, J. M. and Oran, E. S., “The Interaction of a Shock with a Vortex: Shock Distortion and the Production of Acoustic Waves,” Phys. Fluids, Vol. 7, No. 1, pp. 172-184, 1995.

    [13] Grasso, F. and Pirozzoli, S., “Shock-Wave-Vortex Interactions: Shock and Vortex Deformations, and Sound production,” Theoret. Comput. Fluid Dynamics, Vol. 13, No. 6, pp. 421-456, 2000.

    [14] Guichard, L., Vervisch, L., and Domingo, P., “Two-dimensional Weak Shock-Vortex interaction in a mixing zone,” AIAA J., Vol. 33, pp. 1797- , 1995.

    [15] Hakkinen, R. J., Greber, L. and Abarbanel, S. S., “The interaction of an oblique shock wave with a laminar boundary layer,” NASA Memo 2-18-59W, 1959.

    [16] Harten, A., Engquist, B., Osher S. and Charkravarthy, S., “Uniformly High-Order Accurate Essentially Non-Oscillatory Schemes III,” J. Comput. Phys., Vol. 71, pp. 231-303, 1987.

    [17] Hass, J. F. and Sturterant, B., “Interaction of Weak Waves with Cylindrical and Spherical Gas Inhomogenities,” J. Fluid Mech., Vol. 181, pp. 41-76, 1987.

    [18] Higashiyama, J. and Iwamoto, J., “Experimental Study of Exhaust Noise Generated by Pulsating Flow Downstream of Pipe End,” JSAE Review, Vol. 20, pp. 73-70, 2000.

    [19] Hillier, R., “Computation of Shock Wave Diffraction at a Ninety-Degree Convex Edge,” Shock Waves, Vol. 1, pp. 89-98, 1991.

    [20] Inoue, O. and Hattori, Y., “Sound Generation by Shock-Vortex Interactions,” J. Fluid Mech., Vol. 380, pp. 81-116, 1999.

    [21] Inoue, O., “Propagation of Sound Generated by Weak Shock-Vortex Interaction,” Phys. Fluids, Vol. 12, No. 5, pp. 1258-1261, 2000.

    [22] Inoue, O., Hattori, Y. and Sasaki, T., “Sound Generation by Coaxial Collision of Two Vortex Rings,” J. Fluid Mech., Vol. 424, pp. 327-365, 2000.

    [23] Inoue, O. and Takahashi, Y., “Successive generation of Sounds by Shock-Strong Vortex Interaction,” Phys. Fluids., Vol. 12, No. 12, 2000.

    [24] Jacobs, J. W., “Shock-Induced Mixing of Light-Gas Cylindrical,” J. Fluid Mech., Vol. 234, pp. 629-649, 1992.

    [25] Jiang, G.-S., “Algorithm Analysis and Efficient Computation of Conservation Laws,” Ph.D. Thesis, Brown University, USA, 1995.

    [26] Jiang, G.-S. and Shu, C.-W., “Efficient Implementation of Weighted ENO Schemes,” J. Comput. Phys., Vol. 126, No. 1, pp. 202-228, 1996.

    [27] Jiang, Z., Onodera, K. and Takayama, K., “Evolution of Shock Waves and the Primary Vortex Loop Discharged from a Square Cross-Sectional Tube,” Shock Waves, Vol. 9, pp. 1-10, 1999.

    [28] Jiang, Z. and Takayama, K., “Numerical Simulation of Shock Wave flow in an expanding tube by the dispersion controlled schemes,” Proc. of Japanese 8th Symposium of CFD, Tokyo, Japan, pp. 45-48, 1998.

    [29] Jiang, Z., Takayama, K., Babinsky, H. and Meguro, T., “Transient Shock Wave Flows in Tubes with a Sudden Change in Cross Section,” Shock Waves, Vol. 7, pp. 151-162, 1997.

    [30] Jiang, Z. and Takayama, K., “An Investigation into the Validation of Numerical Solutions of Complex Flowfields,” J. Comp. Phys., Vol. 151, pp. 479-497, 1999.

    [31] Jiang, Z., Wang, C., Miura, Y. and Takayama, K., “Three-dimensional propagation of the transmitted Shock Wave in a square cross-sectional chamber,” Shock Waves, Vol. 13, pp. 103-111, 2003.

    [32] Kim, H. D. and Setoguchi, T., “Study of the Discharge of Weak Shocks from an Open end of a Duct,” J. Sound and Vibration, Vol. 226, No. 5, pp. 1011-1028, 1999.

    [33] Kleine, H., Ritzerfeld, E. and Grönig, H., “Shock Wave Diffraction-new aspects of an old problem,” Proceedings of the 19th International Symposium on Shock Waves, Marseille, France, pp. 117-122, 1993.

    [34] Kleine, H., Ritzerfeld, E. and Grönig, H., “Shock Wave Diffraction at a Ninety Degree Corner,” J. of Computational Fluid Dynamics, Vol. 19, pp. 142-158, 2003.

    [35] Li, H. and Ben-Dor, G., “Reconsideration of Pseudo-Steady Shock Wave Reflections and Transition Criteria Between Them,” Shock Waves, Vol. 5, pp. 59-73, 1995.

    [36] Liang, S. M., Wang, J. S., and Chen, H., “Numerical Study of Spherical Blast-Wave Propagation and Reflection,” Shock Waves, Vol. 12, pp. 59-68, 2002.

    [37] Liang, S. M. and Lo, C. P., “Shock/Vortex Interactions Induced by Blast Waves,” AIAA J., Vol. 41, No. 7, pp.1341-1346, 2003.

    [38] Lighthill, M. J., “The Diffraction of Blast. I,” Proc. Roy. Soc. A., Vol. 198, pp. 454-470, 1949.

    [39] Liu, X.-D., Osher, S. and Chan. T., “Weighted Essentially Non-Oscillatory schemes,” J. Comput. Phys., Vol. 115, pp. 200-212, 1994.

    [40] MacCormack, R. W. and Baldwin, B. S., “A Numerical Method for Solving the Navier-Stokes Equations with Application to Shock-Boundary Layer Interactions,” AIAA paper 75-0001, 1975.

    [41] Meadows, K. R., Kumar, A. and Hussaini, M. Y., “Computational Study on the Interaction Between a Vortex and a Shock Wave,” AIAA J., Vol. 29, No. 2, pp.174-179, 1991.

    [42] Meltzer, J., Shepherd J.E., Akbar, R. and Sabet A., “Mach Reflection of Detonation Waves. Dynamic Aspects of Detonation,” AIAA J., Vol. 153, pp. 78-94, 1993.

    [43] Molvik, G. A., “Computation of Viscous Blast Wave Solutions with an Upwind Finite Volume Method,” AIAA Paper 87-1290, 1987.

    [44] Ofengeim, D. K. and Drikakis, D., “Simulation of Blast Wave Propagation over a Cylinder,” Shock Waves, Vol. 7, pp. 305-317, 1997.

    [45] Petrie-Repar P. J. and Jacobs P. A., ”A Computational Study of Shock Speeds in High Performance Shock Tubes,” Shock Waves, Vol. 8, pp. 79-91, 1998.

    [46] Picone, J. M. and Boris, J. P., “Vorticity Generation by a Shock Propagation Through Bubles in a Gas,” J. Fluid Mech., Vol. 189, pp. 23-51, 1988.

    [47] Ribner, H. S., “Perspectives on Jet Noise,” AIAA J., Vol. 19, No. 12, pp.1513-1526, 1981.

    [48] Ribner, H. S., “Cylindrical Sound Wave Generated by a Ring Vortex-Shock Wave Interaction,” AIAA J., Vol. 23, No. 11, pp. 1708-1715, 1985.

    [49] Roe, P. L., “Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes,” J. Comput. Phys., Vol. 43, pp. 357-372, 1981.

    [50] Szumoswki, A., Sobieraj, G., Selerowicz, W. and Piechna, J., “Starting Jet-Wall Interaction,” J. Sound and Vibration, Vol. 232. No. 4, pp. 695-702, 2000.

    [51] Shu, C.-W. and Osher, S., “Efficiently Implementation of the Essentially Non-Oscillatory Shock-Capturing Schemes,” J. Comput. Phys. Vol. 77, pp. 439-471, 1988.

    [52] Shu, C. W. and Osher, S., “Efficiently Implementation of the Essentially Non-Oscillatory Shock-Capturing Schemes II,” J. Comput. Phys. Vol. 83, pp. 32-78, 1989.

    [53] Skews, B. W., “The Shape of a Diffracting Shock Wave,” J. Fluid Mech., Vol. 29, pp. 297-304, 1967.

    [54] Skews, B. W., “The Perturbed region behind a diffracting Shock Wave,” J. Fluid Mech., Vol. 29, pp. 705-719, 1967.

    [55] Skews, B. W. and Erasmus, C., “Interaction of Complex Shock Geometry with a Spiral Vortex,” Proceedings of the Fifth Interactional Workshop on Shock Wave/Vortex Interaction, Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, Taiwan, 2003.

    [56] Sun, M. and Takayama, K., “The Formation of a Secondary Shock Wave behind a shock Wave Diffracting at a Convex Corner,” Shock Waves, Vol. 7, pp. 287-295, 1997.

    [57] Sun, M. and Takayama, K., “A Note Numerical Simulation of Vortical Structures in Shock Diffraction,” Shock Waves, Vol. 13, pp. 25-32, 2003.

    [58] Sun, M. and Takayama, K., “Vorticity Production in Shock Diffraction,” J. Fluid Mech., Vol. 478, pp. 237-256, 2003.

    [59] Takayama, K., Ishii, Y., Sakurai, A. and Kambe, T., “Self-Intensification in Shock Wave and Vortex Interaction,” Fluid Dyn. Res., Vol. 12, pp. 343-348, 1993.

    [60] Takayama, K. and Inoue, O., “Shock Wave Diffraction over a 90 Degree Sharp Corner-Posters Presented at 18th ISSW,” Shock Waves, Vol. 1, pp. 301-312. 1991.

    [61] Takayama, K. and Jiang, Z., “Shock Wave Reflection over Wedges: a Benchmark Test for CFD and Experiments,” Shock Waves, Vol. 7, pp.191-203, 1997.

    [62] Taylor, G. I., “On the Dissipation of eddies,” Aero. Res. Commun. Vol. 598, 1978.

    [63] Thompson, K. W., “Time Dependent Boundary Conditions for Hyperbolic Systems, II,” J. Comp. Phys., Vol. 68, No. 1, pp. 1-24, 1987.

    [64] Thompson, K. W., “Time Dependent Boundary Conditions for Hyperbolic Systems II,” J. Comp. Phys., Vol. 89, No. 2, pp. 439-461, 1990.

    [65] Uchiyama, N. and Inoue, O., “Shock Wave/Vortex Interaction in a Flow over 90-deg Sharp Corner,” AIAA J., Vol. 33, No. 9, pp. 1740-1743, 1995.

    [66] Valentino, M., Kauffman, C. W. and Sichel, M., “Experimental Study of the Mixing of Reactive Gases at Their Interface behind a Shock Wave,” AIAA Paper 98-2507, 1998.

    [67] Visbal, M. and Knight, D., “The Baldwin-Lomax Turbulence Model for Two-Dimensional Shock-Wave/Boundary-Layer Interactions,” AIAA J., Vol. 22, No. 7, 1984.

    [68] Whitham, G. B., “A New Approach to Problems of Shock Dynamics. Part 1: Two-Dimensional Problems,” J. Fluid Mech., Vol.2, pp. 145-171, 1957.

    [69] Whitham, G. B., “A New Approach to Problems of Shock Dynamics. Part 2: Three-Dimensional Problems,” J. Fluid Mech., Vol. 5, pp. 369-386, 1959.

    [70] White, F. M., Viscous Fluid Flow, McGraw-Hill Inc., New York, 2nd ed., 1991.
    [71] Wilcox, D. C., Turbulence Modeling for CFD, DCW Industries, Inc., CA., 1993.

    [72] Yang, J., Kubota, T., and Zukoski, E. E., “An Analysis and Computational Investigation of Shock-Induced Vortical Flows,” AIAA Paper 92-0316, 1992.

    [73] Yang, J., Onodera, O., and Takayama, K., “Holographic Interferometric Investigation of Shock Wave Diffraction,” Visualization Society of Japan, Vol. 14, Supplement No. 1, pp. 85-88, 1994.

    [74] Yang, J., 1995, “Experimental and Theoretical Study of Weak Shock Wave,” Ph.D. Thesis, Institute of Fluid Science, Tohoku University, Sendai, Japan.

    [75] Yates, L. A., “Images Constructed from Computed Flowfields,” AIAA J., Vol. 31, No. 10, pp. 1877-1884, 1993.

    [76] Yu, Q. and Grönig, H., “Numerical Simulation on the Reflection of Detonation Waves,” Proceedings of the 20th International Symposium on Shock Waves, Pasadena, USA, pp. 1143-1148, 1995.

    [77] Yu, Q. and Grönig, H., “Shock Waves from an Open-Ended Shock Tube with Different Shapes,” Shock Waves, Vol. 6, pp. 249-258, 1996.

    下載圖示 校內:立即公開
    校外:2005-01-25公開
    QR CODE