| 研究生: |
黃耀民 Huang, Yao-Ming |
|---|---|
| 論文名稱: |
富克斯群及黎曼曲面 Fuchsian Groups and Riemann Surfaces |
| 指導教授: |
夏杼
Xia, Zhu Eugene |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系應用數學碩博士班 Department of Mathematics |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 雙曲幾何學 、離散群 、黎曼面 、富克斯群 |
| 外文關鍵詞: | Riemann surfaces, discrete groups, Fuchsian groups, hyperbolic geometry |
| 相關次數: | 點閱:80 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一個連通拓樸空間 $X$ 的全覆蓋( universal cover )是指對於一個單連通空間 $Y$ ,伴隨著一個覆蓋映射 $f:Y o X$ 。只要 $X$ 是局部有被定義的,它的任何局部性質就可以被提升至其全覆蓋上。
一致性定理( The Uniformization Theorem )告訴我們,對於一個黎曼曲面( Riemann surface ) $cal S$ ,其唯一有可能的全覆蓋為上半平面 $HH$ ,複數平面 $CC$ 或者是黎曼球面 $CCcup{infty}$ 。對於一個虧格數 $g geq 2$ 的緊緻黎曼面而言,它的全覆蓋僅能為上半平面 $HH$ 。因此,黎曼面是一個雙曲平面( hyperbolic plane ),也就是一個上半平面 $HH$ ,對於一個梅比斯( M"obius )變換的離散( discrete )子群的商。上半平面 $HH$ 同時可以等價的被視為在單位( 龐加萊 )圓盤 $DD$ 上的雙曲幾何模型。
當一個黎曼面是一個雙曲平面對於一個富克斯群( Fuchsian group ),也就是梅比斯變換的離散子群的商時,其雙曲距( hyperbolic metric )就可以投射到這個黎曼面上的雙曲距。因此,我們研究黎曼面上的幾何學,就可以透過這樣的一個距以及去研究富克斯群作用在這個雙曲平面上的幾何學。
Abstract
The universal cover of a connected topological space X is a simply connected
space Y with a map f : Y ! X that is a covering map. Any local
property of X can be lifted to its universal cover, as long as it is defined locally.
By the Uniformization Theorem, the only possible universal covers
for a Riemann surface S are the upper half-plane H, the complex plane C,
or the Riemann sphere C [ {1}. Universal covers of the compact Riemann
surfaces with genuses g _ 2 are the upper half-plane H which can be equivalently
regarded as the unit ( Poincar´e ) disk D. Hence Riemann surfaces are
quotients of the hyperbolic plane by a discrete subgroup of Mobius transformations.
As a Riemann surface is the quotient of the hyperbolic plane by a
Fuchsian group, the hyperbolic metric projects to the hyperbolic metric on
the Riemann surface. So we can study the geometry of the Riemann surfaces
in terms of this metric and by studying the geometry of the action of
the Fuchsian group on the hyperbolic plane. The main subjects in this thesis
are hyperbolic geometry and discrete subgroups of orientation-preserving
isometries of H.
[B1] Beardon, A. F., The geometry of discrete groups, Graduate Texts in Mathematics 91, Springer-Verlag, New York Inc., 1983.
[B2] Beardon, A. F., A Primer on Riemann Surfaces, London Mathematics Society Lecture Note Series 78, Cambridge University Press, 1984.
[BCM] Bujalance, E., Costa, A. F. and Martinez, E. Topics on Riemann Surfaces and Fuchsian Groups, London Mathematics Society Lecture Note Series 287, Cambridge University Press, 2001.
[J1] Jost, J., Compact Riemann Surfaces: An Introduction to Contemporary
Mathematics, Universitext, Springer-Verlag, Berlin Heidelberg, Second edition, 2002.
[K1] Katok, S., Fuchsian Groups, The University of Chicago Press, 1992.
[R1] Ratcliffe, J. G., Foundations of Hyperbolic Manifolds, Graduate Texts in Mathematics 149, Springer-Verlag, New York, Inc., 1994. 61