簡易檢索 / 詳目顯示

研究生: 張展瑄
Chang, Chan-Hsuan
論文名稱: 動捕資料應用於運動重定向之軌跡處理
Trajectory Processing on MoCap Data for Motion Retargeting
指導教授: 蔡明俊
Tsai, Ming-June
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 96
中文關鍵詞: 立足偵測動捕資料系統整合腳步滑動消除運動重定向
外文關鍵詞: Footplant Detection, MoCap Data System Integration, Footskate Cleanup, Motion Retargeting
相關次數: 點閱:135下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由運動追蹤系統所捕捉的人體運動資料通常具有許多雜訊,雖然能夠藉由修復與平滑化等方法儘可能將其消除,但是還是存在腳步滑動的動作不合理問題,因此本研究的議題之一即是針對人體的腳步滑動問題進行處理,藉由偵測腳步立足狀態並調整足部軌跡優化人體動作。
    本研究的另一個議題是機器人的運動重定向,將人體運動資料處理後套用至機器人,使機器人能夠重現人體之動作。本研究所使用的運動為iBMPS動捕而來的動作,另外為了增加運動資料庫,藉由整合其他動捕系統的資料格式獲得其運動資料,並將骨架之模型轉換成人體結構化模型,使模型具有人體特徵。
    運動重定向中,由於人體與機器人的關節自由度與幾何尺寸不相同,因此必須經過關節自由度匹配、關節角映射、運動尺度縮放、腳步軌跡調整、無自碰撞處理、關節物理限制等過程,使機器人得以順利做出運動,但是由於動態平衡暫無有效策略,因此未來期望本系統完成該部分並使真實機器人得以展示運動。

    The human motion data captured by motion capture systems usually has many noises. Although the noises could be smoothed away as possible, there still exists the unreasonable phenomenon of foot skating. Therefore, one of purposes in this study is to process the problem of foot skating by detecting footplants and modifying the trajectories of both feet.
    Another purpose of this study is motion retargeting, which is applying one character’s motion to another different character. In this study, we apply human motions to the humanoid robots. The motions retargeted are captured by iBMPS(intelligent body motion processing system). In addition, to extend the motion database, this study integrates the data formats of another mocap system and transforms its skeleton models to human structure models of iBMPS.
    In motion retargeting, due to the differences of joint degree of freedom and geometrical structure, there are many issues need to conquer, such as joint DOF matching, motion mapping, scaling, foot skating cleanup, self-collision avoidance, joints limitation, etc. After those processes, the robots are able to reproduce human motion, However, the issue of motion balancing is still developing, we expect robots will be able to perform motions without auxiliaries in the future.

    中文摘要 I 致謝 VII 目錄 VIII 表目錄 XII 圖目錄 XIII 第1章 序論 1 1.1 研究動機與目的 1 1.2 文獻回顧 2 1.3 論文綱要 5 第2章 iBMPS系統介紹 6 2.1 iBMPS系統架構 6 2.1.1 iBMPS Capture 7 2.1.2 iBMPS Post 8 2.2 人體模型結構 11 2.3 雙四元數 12 2.4 運動資料格式 15 2.4.1 L2P運動檔 15 2.4.2 BMP運動檔 17 2.5 機器人規格 19 第3章 人體資料處理與擴充 23 3.1 立足狀態偵測 24 3.1.1 立足狀態偵測之性質 24 3.1.2 濾除瞬間立足狀態 27 3.1.3 手動校正立足狀態 30 3.1.4 建立FSS檔案 31 3.2 腳步滑動消除 32 3.2.1 四元數映射 33 3.2.2 立足軌跡處理 34 3.2.3 非立足軌跡處理 37 3.3 動補資料系統整合 40 3.3.1 ASF/AMC檔案介紹 41 3.3.2 骨架轉結構化模型 43 第4章 運動重定向之動作映射 48 4.1 關節自由度匹配 50 4.1.1 人體關節自由度配置 51 4.1.2 關節軸向轉換 53 4.2 關節角映射 57 4.2.1 初始關節角校正 57 4.2.2 根桿件轉換 59 4.2.3 運動尺度調整 60 4.3 腳步軌跡處理 60 4.3.1 腳步軌跡調整 61 4.3.2 足板平行地面 63 4.3.3 腳步無自碰撞處理 64 第5章 運動重定向之物理限制 68 5.1 馬達規格限制 68 5.1.1 關節角度 69 5.1.2 關節速度 70 5.1.3 關節扭力 71 5.2 全身無自碰撞處理 73 5.2.1 碰撞檢測 73 5.2.2 無自碰撞軌跡產生 76 第6章 實驗結果 80 6.1 ASF/AMC整合 80 6.2 運動重定向 83 6.3 關節限制 86 6.3.1 關節速度限制 86 6.3.2 關節扭力限制 87 6.4 碰撞避免(Collision Avoidance) 88 第7章 結論與建議 90 7.1 研究成果 90 7.2 討論及建議 91 7.3 未來展望 93 參考文獻 94

    [1] Kovar, L., Schreiner, J., & Gleicher, M. (2002, July). Footskate cleanup for motion capture editing. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on Computer animation (pp. 97-104). ACM.
    [2] Lu, J., & Liu, X. (2014, July). Foot plant detection for motion capture data by curve saliency. In Computing, Communication and Networking Technologies (ICCCNT), 2014 International Conference on (pp. 1-6). IEEE.
    [3] Ikemoto, L., Arikan, O., & Forsyth, D. (2006, March). Knowing when to put your foot down. In Proceedings of the 2006 symposium on Interactive 3D graphics and games (pp. 49-53). ACM.
    [4] Gleicher, M. (1998, July). Retargetting motion to new characters. In Proceedings of the 25th annual conference on Computer graphics and interactive techniques (pp. 33-42). ACM.
    [5] Hodgins, J. K., & Pollard, N. S. (1997, August). Adapting simulated behaviors for new characters. In Proceedings of the 24th annual conference on Computer graphics and interactive techniques (pp. 153-162). ACM Press/Addison-Wesley Publishing Co..
    [6] Monzani, J. S., Baerlocher, P., Boulic, R., & Thalmann, D. (2000, September). Using an intermediate skeleton and inverse kinematics for motion retargeting. In Computer Graphics Forum (Vol. 19, No. 3, pp. 11-19). Blackwell Publishers Ltd.
    [7] Hsieh, M. K., Chen, B. Y., & Ouhyoung, M. (2005, December). Motion retargeting and transition in different articulated figures. In Computer Aided Design and Computer Graphics, 2005. Ninth International Conference on (pp. 6-pp). IEEE.
    [8] Kawasaki, R., Kitamura, Y., & Kishino, F. (2003, July). Extraction of motion individuality in sports and its application to motion of characters with different figures. In Computer Graphics International, 2003. Proceedings (pp. 306-311). IEEE.
    [9] Pollard, N. S., Hodgins, J. K., Riley, M. J., & Atkeson, C. G. (2002). Adapting human motion for the control of a humanoid robot. In Robotics and Automation, 2002. Proceedings. ICRA'02. IEEE International Conference on (Vol. 2, pp. 1390-1397). IEEE.
    [10] Hollerbach, J. M. (1983, June). Dynamic scaling of manipulator trajectories. In American Control Conference, 1983 (pp. 752-756). IEEE.
    [11] Ruchanurucks, M., & Nakaoka, S. I. (2009, February). Offline and online trajectory generation with sequential physical constraints. In Robotics and Biomimetics, 2008. ROBIO 2008. IEEE International Conference on (pp. 578-583). IEEE.
    [12] Hubbard, P. M. (1993, October). Interactive collision detection. In Virtual Reality, 1993. Proceedings., IEEE 1993 Symposium on Research Frontiers in (pp. 24-31). IEEE.
    [13] Bergen, G. V. D. (1997). Efficient collision detection of complex deformable models using AABB trees. Journal of Graphics Tools, 2(4), 1-13.
    [14] Zhang, X., & Kim, Y. J. (2007). Interactive collision detection for deformable models using streaming AABBs. IEEE Transactions on Visualization and Computer Graphics, 13(2), 318-329.
    [15] 戴閣廷. 運動追蹤資料後處理: 運動資料平順與無自碰撞運動之產生. 成功大學機械工程學系學位論文, 2015, 1-67.
    [16] 張哲豪. 網路分散計算之光學式即時運動追蹤系統開發. 2015. PhD Thesis. National Cheng Kung University Department of Mechanical Engineering.
    [17] 溫少捷. 人體運動資料分割研究. 成功大學機械工程學系學位論文, 2014, 1-99.
    [18] 龍學勇. 人體運動處理系統之研究. 成功大學機械工程學系學位論文, 2013, 1-158.
    [19] 尹菀珊. 運用螺旋理論於人體足部力量分析. 成功大學機械工程學系學位論文, 2015, 1-75.
    [20] 李洋龍. 基於運動追蹤資料之全身逆向動力學. 2012. PhD Thesis. National Cheng Kung University Department of Mechanical Engineering.
    [21] 楊智堯. 使用單一 Kinect 掃描點建立人體模型與運動捕捉. 成功大學機械工程學系學位論文, 2016, 1-106.
    [22] 戴坤霖. 應用於 iBMPS 之各種二維與三維註冊之探討. 成功大學機械工程學系學位論文, 2016, 1-119.
    [23] Pountain, D. (1987). Run-length encoding. Byte, 12(6), 317-319.
    [24] Lee, J., & Shin, S. Y. (2002). General construction of time-domain filters for orientation data. IEEE Transactions on Visualization and Computer Graphics, 8(2), 119-128.
    [25] Lim, C. G. (1999). A universal parametrization in B-spline curve and surface interpolation. Computer Aided Geometric Design, 16(5), 407-422.
    [26] 陳平維. iBMPS 之系統架構及其應用. 成功大學機械工程學系學位論文, 2015, 1-64.
    [27] Siciliano, B., & Khatib, O. (Eds.). (2016). Springer handbook of robotics. Springer.
    [28] CMU Graphics Lab Motion Capture Database, Retrieved July 18, 2017, from http://mocap.cs.cmu.edu/
    [29] 林承輝. 運動編輯與人形機器人之運動平衡. 成功大學機械工程學系學位論文, 2017

    無法下載圖示
    校外:不公開
    電子論文及紙本論文均尚未授權公開
    QR CODE