| 研究生: |
郭建志 Kuo, Chien-Chih |
|---|---|
| 論文名稱: |
IC封裝後熟化製程材料參數數學模型之建立 Modeling the Post-Mold Cure Behavior of EMC |
| 指導教授: |
黃聖杰
Hwang, Sheng-Jye |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 楊氏模數 、後熟化 、黏彈性 、熱固性 、高分子 |
| 外文關鍵詞: | polymer, viscoelastic, modulus, post-mold, cure, thermoset |
| 相關次數: | 點閱:90 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
IC封裝的注模膠封製程(in-mold cure)中,EMC在模具內僅初凝固成形,在材料各層的熱膨脹係數(coefficient of thermal expansion)不同、EMC未熟化完全、材料在熟化過程產生的收縮(shrinkage)情形等等諸多因素的影響之下,成品會有翹曲(warpage)的現象發生,所以必須經由後熟化製程(post-mold cure)來進行調和。後熟化製程的目的,除了使交連反應更趨近於完整之外,在高溫烘烤之下以重物壓整的過程中也會改善產品的翹曲情況。由於成品中EMC含量所佔比例很高,故其楊氏模數在CAE分析上將會是重要的參考參數。本論文主要研究EMC在整個熟化過程中,其楊氏模數與熟化度、溫度及時間關係的演化,利用DSC熱分析儀與PVTC試驗機所測得實驗結果,分析後建構成數學模型,期望將來能應用於IC封裝製程的分析,以及最佳製程的設計。
EMC (epoxy molding compound) is used to encapsulate IC in electronic packaging fields. One critical issue for manufacturing of IC packaging is the warpage induced during the molding process. In order to minimize the warpage, process-dependent material models should be established first. In this paper, a cure-dependent elastic model is established to describe the evolution of material properties during the curing process of a thermosetting polymer. The elastic modulus model is built by way of two experiments. On purpose of finding the relation between temperature, curing time and conversion, a curing kinetic model is constructed from the DSC experiment. Then a new measuring method is adapted to obtain the elastic modulus by using the PVTC tester. Finally, a cure-dependent elastic modulus model is established and all experiment results can be predicted precisely.
[1] 蘇銘勝, “電子構裝材料在注模後烘烤中熱機械性質與數學模式之研究,” 國立成功大學工程科學研究所碩士論文(2003)。
[2] 林俊宏, “EMC及金屬介面剪向及正向黏著力試驗機台之設計與組裝,” 國立成功大學工程科學研究所碩士論文(2003)。
[3] 朱言主, “IC封裝模具黏模效應之研究,” 國立成功大學工程科學研究所碩士論文(2001)。
[4] 張益三, “電子構裝材料固化反應與應力體積及溫度關係模式之研究,” 國立成功大學機械工程研究所碩士論文(1997)。
[5] 胡德, “高分子物理與機械性質(上)(下),” (1994)。
[6] 林建中, “聚合物物性(高分子材料機械性質),” (1999)。
[7] Vernal H. Kenner, Brian D. Happer, and Vladimir Y. Itkin, “Stress Relaxation in Molding Compounds,” Journal of Electronic Materials, Vol. 26, No. 7, pp821-826, (1997).
[8] L. J. Ernst, C. van’t Hot, D. G. Yang, M. S. Kiasat, G. Q. Zhang, H. J. L. Bressers, J. F. J. Caers, A. W. J. den Boer, J. Janssen, “Mechanical Modeling and Characterization of the Curing Process of Underfill Materials, ” Journal of Electronic Packaging Vol. 124, pp97-105, (2002).
[9] H. E. Bair, D. J, Boyle, J. T. Ryan, C. R. Taylor, and S. C. Tighe, and D. L. Crouthamel, “ Thermomechanical Properties of IC Molding Compounds, ” POLYMER ENGINEERING AND SCIENCE, Vol. 30, pp609-617, (1990).
[10] S. R. White, A. B. Hartman, “Effect of Cure State on Stress Relaxation in 3501-6 Epoxy Resin,” POLYMER ENGINEERING AND SCIENCE, MID-DECEMBER Vol. 36, No. 23, pp262-265, (1997).
[11] Yeong K. Kim and Scott R. White, “Stress Relaxation Behavior of 3501-6 Epoxy Resin During Cure,” POLYMER ENGINEERING AND SCIENCE, MID-DECEMBER Vol. 36, No. 23, pp2852-2862, (1996).
[12] Daniel J. O’Brien, Patrick T. Mather, Scott R. White, “Viscoelastic Properties of an Epoxy Resin during Cure,” Journal of COMPOSITE MATERIALS, Vol. 35 No. 10, pp883-903, (2001).
[13] Tommy R. Guess and Steven N. Burchett, “An Experimental/Analytical Study of Strains in Encapsulated Assemblies,” Advances in Electronic Packaging, pp543-550, (1992).
[14] Hideo Miura, Makoto Kitano, Asao Nishimura, and Sueo Kawai, “Thermal Stress Measurement in Silicon Chips Encapsulated in Plastic Packages Under Temperature Cycling,” Advances in Electronic Packaging, pp957-963, (1992).
[15] Willem F. Van Den Bogert, Daniel J. Belton, Michael J. Molter, David S. Soane, and Rolf W. Biernath, “Thermal Stress in Semiconductor Encapsulating Materials,” IEEE TRANSACTIONS ON COMPONENTS, HYBRIDS, AND MANUFACTURING, Vol. 11, No. 3 pp245-251, (1988).
[16] Sindee L. Simon, Gregory B. Mckenna, Oliver Sindt “Modeling the Evolution of the Dynamic Mechanical Properties of a Commercial Epoxy During Cure after Gelation,” Journal of Applied Polymer Science, Vol. 76, pp495-508, (2000).
[17] H, E, Bair, D. J. Boyle, J. T. Ryan, C. R. Taylor, and S. C. Tight, and D. L. Crouthamel, “ Thermomechanical Properties of IC Molding Compounds,” POLYMER ENGINEERING AND SCIENCE, Vol. 30, pp609-617, (1990).
[18] Spencer Chew, “Thermal And Viscoelastic Characterization of Transfer-Molded Epoxy Encapsulant During Simulated Post-Mold Cure,” Electronic Components and Technology Conference, pp1032-1038, (1996).
[19] 劉中行, “高分子物理與機械性質(上)(下),” (1994)。
[20] 徐宏昌、李昆穎, “熱固性塑膠流變性質量測報告,” 國立清華大學化學系(2000)。
[21] Kamal, M. R. and Ryan, M. E., Chapter 4 of Injection and Compression Modeling Fundamentals, A. I. Isayev (editor), Marcel Dekker, New York (1987).
[22] D.G. Yang, K.M.B. Jansen, L.J. Ernst, G.Q. Zhang, W.D. van Driel, H.J.L. Bressers, X.J. Fan, “Prediction of Process-Induced Warpage of IC Packages Encapsulated with Thermosetting Polymers,” Electronic Components and Technology Conference, pp98-105, (2004).
[23] Zhuqing Zhang, Lianhua Fan, Suresh K. Sitaraman, and C.P. Wong, “Four-Laser Bending Beam Measurements and FEM Modeling of Underfill Induced Wafer Warpage,” Electronic Components and Technology Conference, pp747-753, (2004).
[24] K.M.B. Jansen, L. Wang, D.G. Yang, C. van’t Hof, L.J. Ernst, H.J.L. Bressers and G.Q. Zhang “Constitutive Modeling of Moulding Compounds,” Electronic Components and Technology Conference, pp890-894, (2004).
[25] I.M. Ward, D.W. Hadley, “An Introduction to the Mechanical Properties of Solid Polymer,” (1993).
[26] Lawrence E. Nielsen, Robert F. Landel, “Mechanical Properties of Polymers and Composites,” 2nd Edition, (1994).
[27] Alan S. Wineman, K.R. Rajagopal, “Mechanical Response of Polymers : An Introduction,” (2000).
[28] Yang Rao, S.H. Shi, and C.P. Wong, Fellow, “An Improved Methodology for Determining Temperature Dependent Moduli of Underfill Encapsulants,” IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGY, Vol. 23, No. 3, (2000).