研究生: |
高立蓁 Kao, Li-Chen |
---|---|
論文名稱: |
摩擦力及暫態負載對銑削穩定性之影響分析 An Analysis on the Effect of Tool Edge Friction Force and Transient Loading on Milling Stability |
指導教授: |
王俊志
Wang, Jiunn-Jyh |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 110 |
中文關鍵詞: | 銑削穩定性 、暫態響應 、刀尖犁切阻尼 、系統摩擦阻尼 |
外文關鍵詞: | Milling stability, Transient response, Edge ploughing damping, System friction damping |
相關次數: | 點閱:60 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要探討摩擦力及暫態負載對銑削穩定性的影響。首先利用剪犁效應模式描述刀尖切削力,將犁切力展開獲得穩態犁切力、方向效應動態製程阻尼力、干涉效應動態製程阻尼力及其高階項。透過數值模擬觀察不同犁切阻尼力對加工穩定性之影響。方向與干涉效應之製程阻尼力兩者在數學形式相似且對穩定性影響能力相同。以半離散法及切削時域數值模擬發現動態製程阻尼力考慮方向與干涉效應者相較於僅考慮干涉效應者,在低轉速區極限切深曲線提升較高,因此利用剪犁效應模式應共同考慮刀尖犁切係數與製程阻尼係數預測銑削穩定圖。
來自結構介面或刀具與工件間摩擦力造成的非線性現象對切削加工穩定性有相當大影響,適當利用其可提升加工穩定性、加工品質及材料移除率。論文設定摩擦力形式為庫倫阻尼力,推導出振動系統之等效黏滯阻尼與結構振動振幅成反比。利用數值模擬分析銑削加工負載變化對暫態振動振幅及等效阻尼之影響。憑藉降低暫態振幅提升摩擦阻尼可改善或使加工系統維持穩定。最後以極限切深實驗驗證穩定葉瓣圖所預測展現之摩擦阻尼效應特徵,並進行切削實驗驗證不同加工暫態條件對銑削穩定性的影響,重現數值模擬所預測之銑削顫振非線性現象。
This thesis investigates the effect of tool edge friction force and transient loading on milling stability. First, cutting force is described by Dual-mechanism Global Cutting Constants (DGCC). The ploughing force is developed to obtain the static ploughing force, the directional effect dynamic process damping force, the interference effect dynamic process damping force and its high-order terms. The effects of different ploughing damping forces on machining stability are observed by numerical simulation. Both the direction and the interference effect of the process damping force are similar in mathematical form and have the same influence on stability. Therefore, prediction of milling stability should consider both the edge ploughing coefficient and the process damping coefficient.
The nonlinear phenomenon caused by the friction between the structural interface or the tool and the workpiece has a considerable impact on machining stability. Proper application improves machining stability, processing quality and material removal rate. The thesis sets the friction force to the Coulomb damping force and deduces that the equivalent viscous damping is inversely proportional to the structural vibration amplitude. Numerical simulation is used to analyze the influence of milling load variation on transient vibration amplitude and equivalent damping. Improving the friction damping by reducing the transient amplitude enhances the stability. Verify experimentally the influence of different transient conditions on milling stability and present the nonlinear phenomenon of milling by numerical simulation.
參考文獻
[1] Afazov, S. M., Ratchev, S. M., Segal, J., Popov, A.A., Chatter Modeling in Micro-Milling by Considering Process Nonlinearities, Int. J. of Mach. Tools Manuf. 56:28–38, 2012.
[2] Budak, E., Tunc, L.T., A New Method for Identification and Modeling of Process Damping in Machining, ASME J. Manuf. Sci. Eng., 131:051019-1-10, 2009.
[3] Eric, E., Unger, Edward, M., Kerwin, Jr., Loss Factors of Viscoelastic Ststems in Terms of energy Concepts, The Journal of Acoustical Society of America, Volume 34, number 7, 1962.
[4] Fang, B ., DeVor, R. E., Kapoor, S. G., Influence of Friction Damping on Workpiece-Fixture System Dynamics and Machining Stability, Journal of Manufacturing Science and Engineering, 226-233, 2002.
[5] Huang, C. Y., Wang, J. J. J., Mechanistic Modeling of Process Damping in Peripheral Milling. Journal of Manufacturing Science and Engineering, 129(1),12-20, 2007.
[6] Insperger, T., & Stépán, G., Semi-discretization method for delayed systems. International Journal for Numerical Methods in Engineering, 55(5),503-518, 2002
[7] Insperger, T., & Stépán, G., Updated semi-discretization method for periodic delay-differential equations with discrete delay. International Journal for Numerical Methods in Engineering, 61(1),117-141, 2004
[8] J., Munoa, X., Beudaert, Z., Dombovari, Y., Altintas, E., Budak, C., Brecher, G., Stepan, Chatter suppression techniques in metal cutting, CIRP Annals - Manufacturing Technology, Volume 65, Issue 1, Pages 785-808, 2016.
[9] Jin, X., Altintas, Y., Chatter Stability Model of Micro-Milling with Process Damping, ASME J. Manuf. Sci. Eng., 135:031011-1-9, 2013.
[10] Koenigsberger, F., & Sabberwal, A., An investigation into the cutting force pulsations during milling operations. International Journal of Machine Tool Design and Research, 1(1-2), 15-33, 1961.
[11] Kurata, Y., Merdol, S.D., Altintas, Y., Suzuki, N., Shamoto, E., Chatter Stability in Turning and Milling with In Process Identified Process Damping, J. Adv. Mech. Des. Sys., and Manuf. 4:1107–1118, 2010.
[12] Liang, Jin-Wei, Identifying Coulomb and viscous damping from free-vibration acceleration decrements, Journal of Sound and Vibration, Volume 282, Issues 3–5, Pages 1208-1220, 2005.
[13] Martelloti, M. E., An analysis of the milling process: part II—down milling. Trans. ASME 67, 233-251, 1945.
[14] Menq, C, Griffin, J.H., A Comparison of Transient and Steady State Finite Element Analyses of the Forced Response of a Frictionally Damped Beam. ASME. J. Vib., Acoust., Stress, and Reliab. 1985;107(1):19-25.
[15] Oliveto, Nicholas D., Scalia, Giovanni, Oliveto, Giuseppe, Dynamic identification of structural systems with viscous and friction damping. Journal of Sound and Vibration, Volume 318, Issues 4–5, Pages 911-926, 2008.
[16] Ramin, Rahnama, Mozhdeh, Sajjadi, Simon, S. Park, Chatter suppression in micro end milling with process damping, Journal of Materials Processing Technology, Volume 209, Pages 5766–5776, 2009.
[17] Sanliturk, K. Y., Ewins, D. J., MODELLING TWO-DIMENSIONAL FRICTION CONTACT AND ITS APPLICATION USING HARMONIC BALANCE METHOD. Journal of Sound and Vibration, Volume 193, Issue 2, Pages 511-523, 1996.
[18] Tan , X., Rogers, R. J., Equivalent viscous damping models of coulomb friction in multi-degree-offreedom vibration systems. Journal of Sound and Vibration, Volume 185, Issue 1, Pages 33-50, 1995.
[19] Tlusty, J., & MacNeil, P., Dynamics of cutting forces in end milling. Ann. CIRP, 24 (1975), 20-25, 1975.
[20] Uhlmann, E., Mahr, F., A time Domain Simulation Approach for Micro Milling Processes. 3rd CIRP Conf. on Process Machine Interactions, Procedia CIRP 4:22-28, 2012.
[21] Wang, J. J., Liang, S. Y., & Book, W. t., Convolution Analysis of Milling Force Pulsation. Journal of Engineering for Industry, 116(1),17-25, 1994.
[22] Wang, J. J. , Uhlmann, E., Oberschmidt, D., Sung, C.F., Perfilov, I., Critical depth of cut and asymptotic spindle speed for chatter in micro milling with process damping, CIRP Annals - Manufacturing Technology, Volume 65, Issue 1, Pages 113-116, 2016.
[23] Wang, J.-J. J., & Zheng, C., An analytical force model with shearing and ploughing mechanisms for end milling. International Journal of Machine Tools and Manufacture, 42(7), 761-771, 2002.
[24] Wu, Ziying, Liu, Hongzhao, Liu, Lilan, Yuan, Daning, Identification of nonlinear viscous damping and Coulomb friction from the free response data. Journal of Sound and Vibration, Volume 304, Issues 1–2, Pages 407-414, 2007.
[25] Xia, F., Modelling of a two-dimensional Coulomb friction oscillator. Journal of Sound and Vibration, Volume 265, Issue 5, Pages 1063-1074, 2003.
[26] Yellowley, I., Observations on the mean values of forces, torque and specific power in the peripheral milling process, International Journal of Machine Tool Design and Research, 25(4), pp. 337-346, 1985.
[27] Zheng, C. M., Junz Wang, J. J., & Sung, C. F., Analytical Prediction of the Critical Depth of Cut and Worst Spindle Speeds for Chatter in End Milling. Journal of Manufacturing Science and Engineering, 136(1), 2013.