簡易檢索 / 詳目顯示

研究生: 歐恩廷
Ou, En-Ting
論文名稱: 混合式網路編碼的合作式中繼網路之延遲效能分析
Delay Performance of Hybrid Network Coding based on Cooperative Relay Networks
指導教授: 劉光浩
Liu, Kuang-Hao
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 48
中文關鍵詞: 合作式多樣性網路編碼適應性中繼站延遲效能解碼前送放大前送感測網路
外文關鍵詞: Cooperative, diversity, network, coding, adaptive, relay, delay
相關次數: 點閱:128下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在合作式通訊中添加中繼站而運用空間多樣性的變化可以為單一傳輸路徑提供額外的選擇性,目前對於中繼站的研究莫過於放大前傳及解碼前傳,在此兩種模式下,許多文獻已提出增加中繼站於無線系統當中對於可靠度將會有顯著的提升;但隨著中繼站的增加伴隨而來的影響亦會反應於傳輸延遲上因而降低傳輸速率。

    在多用戶的無線傳輸系統中,基於訊號皆為廣播形式,因此利用中繼站與收受
    端皆能同時接收多點訊號源的特性再加上媒體存取控制(MAC) 層中的網路編碼,將這些廣播訊息集合起來進而提升整體的系統吞吐量,雖然是需要額外的記憶體來儲存這些廣播訊息,不過整體而言,能充份利用無線傳輸的廣播特性對於使用者或是整體系統來說仍是有利的。

    本論文是假定在中繼站已存在網路中的條件下,提出混合式網路編碼的中繼站
    協定方式,此協定方式考慮使用者所需要的訊息而進行條件解碼前傳,這與無中繼站協定系統相比,不僅僅能夠降低系統的錯誤率亦能無損於傳輸延遲,模擬結果與理論結果相當匹配。添加中繼站在往後將是一項必然的應用,發展出高效率的網路接取協定來收集散失的廣播訊息、且搭配網路編碼將能比原本無中繼站的協定方式更可靠以及更快速。

    Spatial diversity can be used to mitigate burst errors due to fading channels. One method to implement spatial diversity is through the placement of relays in the network.
    However, an inherent problem is the extra delay introduced by the relaying process. In addition to the source transmission, certain time needs to be reserved for the relay transmission. As a result, it is necessary to determine when the cooperative relay is needed and how the relays should cooperate to improve the bandwidth efficiency.

    This thesis proposes a hybrid relay switching protocol (HRSP) which jointly applies the hybrid automatic repeat-request (HARQ) scheme and network coding mechanism at the MAC layer. The proposed hybrid scheme adaptively switches between different transmission modes depending on the reception results of the relays and destinations. By combining the HARQ with network coding, it is expected that the cooperative relaying can be performed more efficiently. Both numerical and simulation results show that the proposed protocol remarkably outperforms the conventional point-to-point (PP) transmission and network-coded relaying in terms of outage probability and delay.

    Cover Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Chinese Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii English Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Background and Literature Survey . . . . . . . . . . . . . . . . . . . . . . . 3 2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 Cooperative Network and Relay Channel . . . . . . . . . . . . . 4 2.2 Channel Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Network Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.4 Cooperative Relaying . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4.1 AF Relay System . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4.2 DF Relay system . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 H-ARQ Relay Switching Protocol . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1.1 Quasi-Static Rayleigh Fading Channel . . . . . . . . . . . . . . 14 3.1.2 Average Bit Error Rate . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Conventional Point-to-Point Networks . . . . . . . . . . . . . . . . . . 16 3.2.1 Outage Performance . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2.2 Delay Performance . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3 Relay-based Cooperative Networks . . . . . . . . . . . . . . . . . . . . 20 3.3.1 Outage Performance . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3.2 Delay Performance . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4 Numerical Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . 32 4.1 Delay Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.1.1 Uncoded Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.1.2 Channel-Coded Case . . . . . . . . . . . . . . . . . . . . . . . . 36 4.2 Outage Performance of PP and HRSP . . . . . . . . . . . . . . . . . . 38 4.2.1 Uncoded Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.2.2 Channel-Coded Case . . . . . . . . . . . . . . . . . . . . . . . . 39 5 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

    [1] S. Diggavi, N. Al-Dhahir, A. Stamoulis, and A. Calderbank, “Great expectations:The value of spatial diversity in wireless networks,” in Proc. IEEE, no. 2, February, 2004.
    [2] P. Bello and B. Nelin, “Predetection diversity combining with selectively fading channels,” IRE Trans. Commun. Syst., vol. 10, no. 1, pp. 32–42, 1962.
    [3] J. Winters, “Optimum combining in digital mobile radio with cochannel interference,” IEEE Trans. Veh. Technol., vol. 33, no. 3, pp. 144–155, 1984.
    [4] S. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE J. Select. Areas Commun., vol. 16, no. 8, pp. 1451–1458, 1998.
    [5] T. Himsoon, W. Su, and K. Liu, “Differential transmission for amplify-andforward cooperative communications,” IEEE Signal Processing Lett., vol. 12, no. 9, pp. 597–600, 2005.
    [6] T. Tsiftsis, G. Karagiannidis, and S. Kotsopoulos, “Dual-hop wireless communications with combined gain relays,” in Proc. IEE Commun., no. 5, October,
    2005.
    [7] Y. Zhao, R. Adve, and T. Lim, “Symbol error rate of selection amplify-and-forward relay systems,” IEEE Commun. Lett., vol. 10, no. 11, pp. 757–759, 2006.
    [8] N. Beaulieu and J. Hu, “A closed-form expression for the outage probability of decode-and-forward relaying in dissimilar Rayleigh fading channels,” IEEE Commun. Lett., vol. 10, no. 12, pp. 813–815, 2006.
    [9] M. Souryal and B. Vojcic, “Performance of amplify-and-forward and decode-andforward relaying in Rayleigh fading with turbo codes,” in Proc. ICASSP, May, 2006.
    [10] T. Hunter and A. Nosratinia, “Diversity through coded cooperation,” IEEE Trans. Wireless Commun., vol. 5, no. 2, pp. 283–289, 2006.
    [11] I. Krikidis and J. Belfiore, “Three scheduling schemes for amplify-and-forward relay environments,” IEEE Commun. Lett., vol. 11, no. 5, pp. 414–416, 2007.
    [12] P. Popovski and H. Yomo, “Wireless network coding by amplify-and-forward for bi-directional traffic flows,” IEEE Commun. Lett., vol. 11, no. 1, pp. 16–18, 2007.
    [13] J. Hu and N. Beaulieui, “Performance analysis of decode-and-forward relaying with selection combining,” IEEE Commun. Lett., vol. 11, no. 6, pp. 489–491, 2007.
    [14] D. Michalopoulos and G. Karagiannidis, “Distributed switch and stay combining (DSSC) with a single decode and forward relay,” IEEE Commun. Lett., vol. 11, no. 5, pp. 408–410, 2007.
    [15] A. Ettefagh, M. Kuhn, and A. Wittneben, “Throughput performance of two-way relaying in IEEE 802.11 networks,” in Proc. ISWCS 4th, October/16, 2007.
    [16] X. Bao and J. Li, “Efficient message relaying for wireless user cooperation: decode-amplify-forward (DAF) and hybrid DAF and coded-cooperation,” IEEE Trans. Wireless Commun., vol. 6, no. 11, pp. 3975–3984, 2007.
    [17] H. Shin and J. Song, “MRC analysis of cooperative diversity with fixed-gain relays in Nakagami-m fading channels,” IEEE Trans. Wireless Commun., vol. 7, no. 6, pp. 2069–2074, 2008.
    [18] C. Peng, Q. Zhang, M. Zhao, and Y. Yao, “On the performance analysis of network-coded cooperation in wireless networks,” in Proc. IEEE INFOCOM, May/6, 2007.
    [19] F. Onat, A. Adinoyi, Y. Fan, H. Yanikomeroglu, J. Thompson, and I. Marsland, “Threshold selection for SNR-based selective digital relaying in cooperative wireless
    networks,” IEEE Trans. Wireless Commun., vol. 7, no. 11, pp. 4226–4237, 2008.
    [20] D. Michalopoulos and G. Karagiannidis, “Two-relay distributed switch and stay combining,” IEEE Trans. Commun., vol. 56, no. 11, pp. 1790–1794, 2008.
    [21] S. Ikki and M. Ahmed, “Performance of cooperative diversity using equal gain combining (EGC) over Nakagami-m fading channels,” IEEE Trans. Wireless Commun., vol. 8, no. 2, pp. 557–562, 2009.
    [22] K.-H. Liu and H. H. Chen, “Probabilistic relay selection for fast selection cooperation in half-duplex wireless networks,” in Proc. IEEE GLOBECOM, November/30, 2009.
    [23] K.-H. Liu, H.-Y. Shin, and H. H. Chen, “Interference-resistant cooperative wireless networks based on complementary codes,” Wireless Communications and Mobile
    Computing, 2009.
    [24] M. Hasna and M. Alouini, “Harmonic mean and end-to-end performance of transmission systems with relays,” IEEE Trans. Commun., vol. 52, no. 1, pp. 130–135, 2004.
    [25] S. Sharma, Y. Shi, J. Liu, Y. Hou, and S. Kompella, “Is network coding always good for cooperative communications?,” in Proc. IEEE INFOCOM, March/14, 2010.
    [26] T. Cover, “Broadcast channels,” IEEE Trans. Inform. Theory, vol. 18, no. 1, pp. 2–14, 1972.
    [27] A. Viterbi, “Error bounds for convolutional codes and an asymptotically optimum decoding algorithm,” IEEE Trans. Inform. Theory, vol. 13, no. 2, pp. 260–269, 1967.
    [28] K. Hsu, “Viterbi decoder hardware implementation for digital video broadcasting standard for terrestrial,” Thesis of Master, Institute of Communication Engineering, NCU, Taiwan, R.O.C., 2005.
    [29] U. Hsu, “Design of a dual mode turbo/convolutional codec IP,” Thesis of Master, Department of Electrical Engineering, NCKU, Tainan, Taiwan, R.O.C., 2003.
    [30] P. Elias, “Coding for noisy channels,” IRE Convention Record, vol. 4, pp. 37–46, 1955.
    [31] J. Odenwalder, “Optimal decoding of convolutional codes,” Ph. D. Dissertation, Department of Systems Sciences, School of Engineering and Applied Sciences, University of California at Los Angeles, 1970.
    [32] R. Ahlswede, N. Cai, S. Li, and R. Yeung, “Network information flow,” IEEE Trans. Inform. Theory, vol. 46, no. 4, pp. 1204–1216, 2000.
    [33] S. Li, R. Yeung, and N. Cai, “Linear network coding,” IEEE Trans. Inform. Theory, vol. 49, no. 2, pp. 371–381, 2003.
    [34] E. Biglieri, J. Proakis, S. Shamai, and D. di Elettronica, “Fading channels: Information-theoretic and communications aspects,” IEEE Trans. Inform. Theory, vol. 44, no. 6, pp. 2619–2692, 1998.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE