簡易檢索 / 詳目顯示

研究生: 康政畬
Kang, Chne-Yu
論文名稱: 氮離子植入不銹鋼之電漿離子佈植理論模型之建立與實驗驗證
The Theoretical study and Experimental verification for Plasma Ion Implantation of Nitrogen Ions into Stainless Steel
指導教授: 林仁輝
Lin, Jen-Fin
學位類別: 碩士
Master
系所名稱: 工學院 - 微機電系統工程研究所
Institute of Micro-Electro-Mechancial-System Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 95
中文關鍵詞: 不鏽鋼離子佈植
外文關鍵詞: nitrogen, stainless steel, ion implantation
相關次數: 點閱:67下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   這個研究的目標是建立一套理論模型,描述離子植入靶材後的濃度分佈,以預測植入後的材料組成及顯現出的材料特性,進而就我們的需求以改變植入離子、底材、各種植入條件的方式,獲得所需的材料特性。本研究藉由碰撞力學與電動力學,計算出離子進入靶材後的射程,再配合統計學得到射程分佈。另一方面,考慮濺射效應,在模型中加入濺射產額及表面濺射去除厚度。最後,將以上兩大部分結合熱擴散效應,建立出佈植離子在靶材中的濃度分佈模型。

      實驗分為兩部份:離子佈植製程及奈米機械性質檢測。製程部份,以核能研究所PIII(Plasma immersion ion implantation)將氮離子植入304不鏽鋼試片;試片完成後以輝光放電分光儀(GDS)作氮縱深濃度分佈分析。奈米機械性質檢測方面,以壓痕試驗量測經過離子佈植之後的304不鏽鋼,氮改質層在硬度及楊氏模數上的改變,發現上述兩種機械性質皆有明顯的提升。最後,本研究藉由以上兩組實驗,對植入後試片機械性質的改變及改質層濃度分析結果做了比較,得到植入時的電壓、溫度、製程時間、及改質後的氮濃度分佈對改質層機械性質的影響。發現對機械性質影響最大的,不在於製程時的製程參數,重要的是改質層的氮濃度高低。氮濃度高,硬度與楊氏模數也會隨著提高。
      
      由理論所推得的濃度分佈曲線,與GDS分析結果比較。峰值位置的誤差至表面算起不會超過10%,峰值高度的誤差也在10%之內,圖線趨勢上也極為相近,顯示理論模型由表面處至峰值附近,已經達到可以預測實驗結果的目的。

      In this study, our target is to establish a theoretical model to describe concentration distribution of nitrogen ion doped into target material. By this model, we can predict the composing of material after ion implantation and the material property. Thus we can change the kind of ions, the kind of target material, or conditions of implantation, to tie in our requirement, and obtaining the implanted material quality we need. This study stresses three parts. One is statistic calculation for the Gaussian distribution of ion’s moving distance in the target by collision dynamics and electrodynamics. The other is considering about sputtering effect, Adding sputtering yield and reduced thickness by surface sputtering. At last, the third part is combining above two parts with effect of thermal diffusion. The ion implantation concentration distribution model is finally established.

      There are two parts in experiment. One is the fabrication of ion implantation. The other is examination of nano-mechanical properties. In the part of fabrication, nitrogen ions are doped into 304 stainless steel chip. We analyze the chip after ion implantation by GDS in the distribution of nitrogen concentration. After getting the experimental data of GDS, we compare the data with our theoretical curve. We obtain very well result. In the part of examination of nano-mechanical properties, by indentation test, we examine the difference of formation layer’s hardness and Young’s modulus. We find that both of two material property are better than before implanting. At last, by above two experiments, we compare the difference of mechanical property with the result of concentration distribution analysis of formation layer. We get the influence of formation layer mechanical property by doping voltage, temperature, total fabrication time, and formation layer distribution of nitrogen concentration. We find that fabrication parameters are not the largest factor to influence the mechanical properties. The largest one is the height of nitrogen concentration. If nitrogen concentration is higher, hardness and Young’s modulus will be higher too.

      Comparing with theoretical curve and GDS analysis result data, the inaccuracy is not over 10% both in peak depth and peak height. The trend of theoretical curve is very close to experimental result. It shows that the model can predict experimental result from surface to the depth of peak.

    中文摘要 I 英文摘要 III 誌謝 IV 目錄 V 表目錄 VIII 圖目錄 IX 符號表 X 第一章 緒 論 1 1-1 前言 1 1-2 文獻回顧 3 1-3 研究目的及內容 5 第二章 基本理論 7 2-1 射程分佈理論 7 2-1-1 核阻止能力Sn(E) 8 2-1-2 電子阻止能力Se(E) 16 2-1-3 射程分佈標準差 19 2-2 表面濺射理論 25 2-2-1 濺射產額 25 2-2-2 表面原子結合能U0 28 2-2-3 濺射去除厚度 32 2-2-4 結合濺射理論與射程分佈理論 33 2-3 電漿分析 35 2-3-1 注量分析 35 2-3-2 電漿成分參數設定 37 2-4 熱擴散系統加入 37 2-5 奈米壓痕試驗之硬度與彈性模數理論建立 42 2-5-1 概述 42 2-5-2 硬度與彈性模數理論建立 43 第三章 實驗方法及步驟 57 3-1 實驗目的 57 3-2 離子植入表面改質 57 3-2-1 離子植入系統設備 57 3-2-2 試驗材料 58 3-2-3 製程步驟 58 3-3 改質層特性分析及鑑定 59 3-3-1 氮濃度分布縱深分析 59 3-3-2 改質層硬度、楊氏模數之檢測 60 第四章 結果與討論 64 4-1 輝光放電縱深分析結果與理論模型對照 64 4-1-1 植入之氮離子價數決定與第一平均射程位置 64 4-1-2 雙峰(多峰)效應 65 4-2 植入參數不同對植入結果的影響 67 4-2-1 電壓方面 67 4-2-2 溫度方面 68 4-2-3 時間方面 69 4-3壓痕試驗分析 69 4-3-1 電壓方面 70 4-3-2 溫度方面 71 4-3-3 時間方面 71 第五章 結論與未來研究方向 91 5-1 結論 91 5-2 未來研究方向 93 參考文獻 94

    1. 莊達人,“VLSI製造技術”, 高立圖書有限公司, (2002), pp.413-472.
    2. G. Carter, J. S. Colligon and W. A. Grant, eds, “Ion induced re-emission data from a glass surface”, Institute of Physics, London and Bristol, (1986).
    3. D. K. Sood, G. Dearnaley, ” Applications of Ion Beams to Materials”, ibid, p196
    4. J. A. Borders and J. M. Poate, “Lattice-site location of ion-implanted impurities in copper and other fcc metals”, Phys. Rev. B 13, (1976), pp.969-979.
    5. J.F. Ziegler and I. J. R. Baumvol, eds “Ion Implantation Science and Technology”, Academic Press Inc., (1984).
    6. J. Lindhard, M. scharff and H. E. Schiott, Fys. Medd. Kgl. “Range concepts and. heavy ion ranges”, Danske videnskab selskab, vol. 34(1968), p14
    7. Paul K.Chu, Shu Qin, Chung Chan, Nathan W. Cheung, Lawrece A. Larson,“Plasma immersion ion implantation-a fledgling technique for semiconductor processing”, Materials Science and engineering, R17(1996), pp.207-280.
    8. B. Chapman, “Glow Discharge processes”, Wiley, New York, (1980), p.107.
    9. Grove, W.R., Trans, Roy.Soc.London, vol, 147(1852), p87
    10.Sigmund, P., “Theory of Sputtering Yield of Amorphous and Polycrystalline Targets” , Phys.Rev., vol. 184(1969), p383
    11.Sander, J.B.et al., Phil.Mag., “Untersuchung des magnetischen kriechens indunnen ferromagnetischen Schichten bei verschiedenen Temperaturen” vol. 17(1968), p211
    12.Schulz, F.et al., “Influence of ion implantation concentration distribution in amorphous target by sputtering” Rad.Eff., vol. 29(1976), p31
    13.Paul Shewmon, “Diffusion in solid”, TMS, (1989), pp.10-91
    14.張通和, 吳瑜光,“離子注入表面優化技術”, 冶金工業出版社, (1993).
    15.J.D. Jackson, “Classical Electrodynamics”, John Wiley & Sons Inc, (1975), chapter 13.
    16.M.T. Robinson, D.K. Holmes and O. S. Oen, eds, “Monte Carlo Calculation of the Range of Energetic Atoms in Solids”, (1961).
    17.胡坤德, “統計學”, 華泰出版社 , 台北市 , (1981),第三章.
    18. 王竹西,“統計物理學導論”, 凡異發行 ,台北市, (1985), p24
    19.Sigmund, P., “Sputtering Efficiency of Amorphous Substances” Can.J.Phys., vol. 46(1968), p46
    20.Sigmund, P. et al., “Proc. Int. Conf. on Application of Ion Beam to Semiconductors Technology”, Editions Ophrys., (1967), p215
    21. Z. Xia, S. Meassick, C. Chan, “Modeling and Experiment on Plasma Source Ion Implantation”, Submitte to J. Appl. Phys.
    22. J. R. Conrad, “Sheath thickness and potential profiles of ion-matrix sheaths for cylindrical and spherical electrodes.”, Journal of Applied Physics, vol. 62(1987), pp.777-779.
    23. M. A. Lieberman, “Plasma Discharges and Materials Processing”, IEEE Trans. Plasma science, 16(1988), p638.
    24. P.V. O`neil, “Advanced Engineering Mathematics,”, ITP Company, 4th ed. (1995)
    25.陳冠維, “掃描式探針顯微鏡摩擦力檢測應用於不鏽鋼氮離子植佈技術之建立及材料微/奈米機械性質檢測”, 國立成功大學, 碩士論文,(2003)
    26.Roland Wiesendanger(Ed.), “Scanning Probe Microscopy-Analytical Methods”, Springer-Verlag, New York(1998)
    27.G. M. Pharr, W. C. Oliver and F. R. Brotzen, “On the Generality of the Relationship Among Contact Stiffness, Contact Area, and Elastic Modulus During Indentation”, J. Mater. Res., Vol. 7, (1992) pp.613-617
    28.I. N. Sneddon, “The Relation between Load and Penetration in the Axisymmetric Boussinesq Problem for A Punch of Arbitary Profile”, Int. J. Engng Sci., Vol. 3, (1965) pp.47-57
    29.R.B.King,”Elastic Analysis of some Punch Problems for a Layered Medium”, Int. J. Solids Structure, Vol. 23, No. 12, (1987) pp.1657-1664
    30.W. C. Oliver and G. M. Pharr, “An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments”, J. Mater. Res., Vol. 7, (1992) pp.1564-1583
    31.J. B. Pethica, R. Hutchings and W.C. Oliver, “Hardness Measurement at Penetration as small as 20nm”, Philos. Mag. A., Vol. 48, No. 4, (1983) pp.593-606

    下載圖示 校內:2006-07-29公開
    校外:2006-07-29公開
    QR CODE