| 研究生: |
吳泓志 Wu, Hong-Chih |
|---|---|
| 論文名稱: |
具單層貼附式壓電材料之Timoshenko樑震動分析 Vibration Analysis of Timoshenko Beam with a Surface-Mounted Piezoelectric Material |
| 指導教授: |
王榮泰
Wang, Rong-Tai |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 壓電片 、懸臂樑 、模態頻率 、有限元素 、振動 |
| 外文關鍵詞: | Timoshenko beam, piezoelectric material, resistor, finite element, vibration |
| 相關次數: | 點閱:118 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文目的為探討單層貼附式壓電片Timoshenko懸臂樑之振動分析,將壓電片貼附在結構的下方,採用有限元素法來探討壓電懸臂樑的動態響應且用模態法來驗證有限元素法的可行性,以此有限元素為基底配合 對結構進行動態模擬並探討壓電材料產生的電壓大小。
在模態法方面,為了解壓電樑力學行為,則利用應力場、應變場與位移的關係推導應變能項與動能項,再以 求得壓電樑之運動方程式,進而計算出模態頻率,並討論在不同幾何參數下對模態頻率的影響。
在有限元素法方面,用靜態平衡方程式推導其位移場之通解,藉由應變能項與動能項計算結構的質量矩陣及勁度矩陣,建立有限元素模型,再利用堆疊方式經 解出系統的模態頻率。
在力電耦合方面,利用有限元素法為基底再以Newmark直接積分法對此結構進行位移分析,接著利用 ,探討壓電材料位置、長度、厚度產生的電壓大小。
In the thesis, the cantilevered Timoshenko beam with partially surface mounted piezoelectric material is presented. A resistor connected two surfaces of the piezoelectric material forms a network. The governing equation of the entire system is derived from the Hamilton’s principle. The modal frequencies are obtained by the analytic approach. The shape functions of one element of the entire beam are obtained by solving the equations of static equilibrium with nodal displacements of the element. Then, the finite element technique is set to investigate the coupling between the motion of the entire beam and induced voltage on the piezoelectric material under an external excitation. The modal frequencies obtained the finite technique will be compared with those analytic results. The effects of resistance of resistor, and the location, length and thickness of the piezoelectric material on the vibration of the entire beam are studied. Results show that larger resistance and piezoelectric material can reduce the vibration more efficiently.
參考文獻
1. C. Q. Chen, X. M. Wang and Y. P. Shen,“Finite element approach of vibration control using self-sensing piezoelectric actuators,”Computers and Structures, Vol.60, No.3, pp. 505-512, 1996.
2. H. S. Tzou and G. C. Wang, “Distributed structural dynamics control of flexible manipulators-I. Structural dynamics and viscoelastic actuator,” Computers and Structures,Vol.35,
pp. 669-677, 1990.
3. S. K. Ha, C. Keilers, and F. K. Chang, “Finite element analysis of composite structures containing distributed piezoelectric sensors and actuators,”AIAA Journal, Vol.30, pp. 772-780, 1992.
4. A. Benjeddou, M. A. Trindade, and R. Ohayon, “New shear Actuated Smart Structure Beam Finite Element,”AIAA Journal, Vol.37, pp. 378-383, 1999.
5. D. H. Robbins and J. N. Reddy, “Analysis of piezoeletrically actuated beams using a layer-wise displacement theory,”Computers and Structures, Vol.41, No.2. pp. 265-279, 1991.
6. E. F. Crawley and J. De Luis, “Use of piezoelectric actuators as elements of intelligent structures,” AIAA Journal, Vol.25, No.10. pp. 1373-1385, 1987
7. S.Brooks and P. Heyliger, “Static behavior of piezoelectric laminates with distributed and patched actuators,”Journal of intelligent Material Systems and Structures, Vol.5, pp. 635-646,1994.
8. J. G. Smits and A. Ballato, “Dynamic admittance matrix of cantilever bimorphs,”Journal of Microelectromech System, Vol.3, No.3, pp. 105-112,1994.
9. J. H. Huang and H. I. Yu, “Dynamic electromechanical response of piezoelectric plates as sensors or actuators,”Materials Letters, Vol.45, pp. 70-80, 2000.
10. H. Abramovich and A.Livshits,“Dynamic behavior of cross-ply laminated beams with piezoelectric layers,”Computers and Structures, Vol.25, pp. 371-379, 1993.
11. M. D. Sciuva and U. Icardi,“Large deflection of adaptive multilayered Timoshenko beams,”Computers and Structures, Vol.31, No.1, pp.49-60, 1995.
12. X. D. Zhang and C. T. Sun,“Formulation of an adaptive sandwich beam,”Smart Materials And Structures, Vol.5, pp.814, 1996.
13. X. D. Zhang and C. T. Sun,“Use of thickness-shear mode in adaptive sandwich structures,”Smart Materials And Structures, Vol.4, pp. 202, 1995.
14. C. N. Della and D. Shu,“Vibration of beams with piezoelectric inclusions,”International Journal of Solids and Structures, Vol.44, pp. 2509-2522, 2007.
15. J. G. Smits, W. S. Choi, and A. Ballato,“Resonance and antiresonance of symmetric and asymmetric piezoelectric flexors,”
Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions, Vol.44, No.2, pp. 250-258, 1997.
16. J. Pan, C. H. Hansen, and S. D. Snyder,“A study of response of a simple supported beam to excitation by a piezoelectric actuator,”Journal of Intelligent Material Systems and Structures, Vol.3, pp. 120-130, 1992.
17. M. C. Ray, K. M. Rao, and B. Sanmanta,“Exact solution for static analysis of an intelligent structure under cylindrical bending,”Computer and Structures, Vol.47, No.6, pp. 1031-1042, 1993.
18. Q. Wang, and S. T. Quek,“A model for the analysis of beams with embedded piezoelectric layer,”Journal of Intelligent Material Systems and Structures, Vol.13, pp. 61-70, 2002.
19. R. L. Goldberg, M. J. Jurgents, D. M. Mills, C. S. Henrique,
D. Vaughan, and S. W. Smith,“Modeling of piezoelectric multilayer
ceramics using finite element analysis.”Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions, Vol.44, No.6, pp. 1204-1210, Nov.1997.
20. H. A. Sodano, D. J. Inman and G. Park,“A Review of Power Harvesting from Vibration using Piezoelectric Materials,”The Shock
and Vibration Digest, Vol.36, No.3, pp. 197-205, May. 2004.
21. Y. C. Shu and I. C. Lien,“Analysis of power output for piezoelectric energy harvesting systems,”Smart Materials and Structures, Vol.15, pp. 1499-1512, 2006.
22. H. Antes, “Dynamic analysis of plane frames by integral equations for bars and Timoshenko beams,”Journal of Sound and Vibration, Vol.276, pp. 807-836, 2004.