簡易檢索 / 詳目顯示

研究生: 林智揚
Lin, Chih-Yang
論文名稱: 含希夫鹼基團之1,2,4-三氮唑與三苯胺衍生物: 合成、鑑定與其在高分子發光二極體的應用
1,2,4-Triazole and Triphenylamine Derivatives with Schiff Base Groups: Synthesis, Characterization and Application in PLEDs
指導教授: 陳雲
Chen, Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 97
中文關鍵詞: 高分子發光二極體電洞緩衝層濕式製程三苯胺三氮唑希夫鹼
外文關鍵詞: PLEDs, hole buffer, solution process, Schiff base
相關次數: 點閱:124下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有機或高分子發光二極體(OLEDs, PLEDs)已被譽為新一世代的平面顯示器,其原理為在施予一偏壓下,分別來自陽極與陰極注入之電洞及電子,藉由傳輸至發光層進行再結合而形成激子,並釋放出光而回至基態。而若要達到高的發光效率,傳輸至發光層內的載子平衡極為重要;然而大部分有機材料中,電洞的傳輸速度比電子來得快,易造成載子不平衡,再結合比率低,而降緩電洞的載子傳輸速率則是有效改善有機發光二極體元件效率的方法之一。此外,傳統上多層OLED元件以真空蒸鍍的方式成膜製備,但由於需操作在高溫且低壓條件下,因此製備複雜且成本較高。故本研究設計並合成出可用於濕式製程的電洞緩衝材料,以提高元件效率,亦能降低製備成本。
    本研究利用Suzuki Coupling Reaction與Schiff Base Condensation Reaction合成出外圍含有三個希夫鹼基團之1,2,4-三氮唑(TAZS)及三苯胺(TPAS),以核磁共振光譜(1H NMR、COSY) 、紅外線光譜儀(FTIR)、基質輔助雷射脫附游離飛行質譜儀(MALDI/TOF-MS)鑑定其結構,並分析其水解性質、熱性質、光學性質、電化學性質、膜態及元件特性。最後將其作為電洞緩衝層(Hole-Buffer Layer: HBL),製備PLED多層元件。
    實驗發現,TPAS容易水解,而TAZS則較為穩定;熱性質方面,TAZS熱裂解溫度為264 oC,且因主體外圍的希夫鹼基團使其不易聚集排列而產生結晶,因此並無觀察到結晶峰;TAZS的薄膜態螢光放光峰為527 nm,而其量子效率低,可避免影響元件發光光色;從循環伏安法得到TAZS之LUMO/HOMO能階為-2.40/-5.23 eV,比較其LUMO及HOMO能階位置相對於發光層,TAZS不僅能緩衝電洞進入發光層,同時也具有侷限電子於發光層的特性。本研究以旋轉塗佈法將TAZS塗佈於電洞注入層(PEDOT:PSS)上作為電洞緩衝層(HBL)製備多層螢光元件(ITO/PEDOT:PSS/HBL/SY/LiF/Al);在無加入電洞緩衝層之元件最大亮度為8,484 cd/m2,最大電流效率為2.13 cd/A,而加入TAZS作為電洞緩衝層後,最大亮度提升至19,047 cd/m2,最大電流效率亦提升至4.08 cd/A。
    研究結果顯示,加入TAZS作為元件之電洞緩衝層可以使電洞及電子在發光層中更加平衡;TAZS不僅能減緩電洞傳輸的能力,也具有電子阻擋特性,大幅提升元件之表現,並且能以濕式製程的方式塗佈製作,在電洞緩衝材料的應用上具有發展潛力。

    In recent years, solution-processed polymer light-emitting diodes (PLEDs) have been widely studied owing to its low energy consumption, self-emissive ability, and fast response time in solid-state lighting application. In this work, we successfully synthesized a new material, TAZS (1,2,4-triazole as main group) and TPAS (Triphenylamine as main group), containing trihydroxy tert-butyl groups. The hydrolysis test indicates that TPAS is easily hydrolyzed but TAZS is much more stable in water. TAZS was applied as efficient hole buffer layer by solution process which can reduce hole mobility to increase PLED efficiency. TAZS possess well morphology because of non-crystalline characteristic. In electrochemical measurement, HOMO and LUMO levels were -5.23 and -2.40 eV, respectively. Multilayer PLEDs were fabricated by spin-coating process with a configuration ITO/PEDOT:PSS/TAZS/SY/ETL/LiF/Al. The best performance of TAZS device (maximum luminance: 19,046 cd/m2, maximum current efficiency: 4.08 cd/A) was superior to the device without TAZS (8,484 cd/m2, 2.13 cd/A). These results demonstrate that TAZS was a potential use for hole buffer material.

    摘要 I 誌謝 XI 目錄 XII 表目錄 XIV 圖目錄 XV 第一章 緒論 1 1-1. 前言 1 1-2. 理論基礎 4 1-2-1 有機材料的共軛導電特性[7-9] 4 1-2-2 螢光理論[10, 11] 5 1-2-3 影響螢光強度之要點 8 1-2-4 能量機制[12, 13] 10 1-2-5 分子間激發態(Interchain Exciton)[15, 16] 13 1-3. 元件發光原理[18-20] 15 1-4. 元件結構 17 1-4-1 單層元件[21, 22] 17 1-4-2 多層元件[1] 18 第二章 文獻回顧 20 2-1. 有機電激發光材料的分類 20 2-1-1. 發光層材料 21 2-1-2. 電洞注入/傳輸材料(HIM/HTM)[1] 22 2-1-3. 電子注入/傳輸材料(EIM/ETM) 23 2-1-4. 電洞緩衝材料(HBuM) 24 2-2. 有機發光二極體的效率[1] 25 2-2-1. 影響有機發光二極體效率的參數 25 2-2-2. 增進載子平衡的方法 26 2-3. 濕式製程(Solution Process) 27 2-4. 鈴木-Suzuki-Miyaura Coupling Reaction 28 2-5. 希夫鹼於有機半導體上的應用 29 2-6. 研究動機 32 第三章 實驗內容 34 3-1. 實驗裝備與設備 34 3-2. 鑑定儀器 36 3-3. 物性及光電特性測量儀器 38 3-4. 實驗藥品及材料 45 3-5. 合成步驟 47 3-6. 分子的合成 49 3-7. 元件設計、製作及量測 53 3-7-1. PLED元件之電洞緩衝層應用 53 3-7-2. Hole-only元件製作步驟 56 3-7-3. Electron-only元件製作步驟 57 第四章 結果與討論 58 4-1. 分子的合成與鑑定 59 4-1-1. 核磁共振光譜(NMR) 59 4-1-2. 紅外線光譜儀(FTIR) 61 4-1-3. 基質輔助雷射脫附游離飛行質譜儀 (MALDI/TOF-MS) 62 4-2. 水解程度測試 71 4-3. 熱性質分析 72 4-3-1. 熱重分析(TGA) 72 4-3-2. 微差式掃描熱卡計分析(DSC) 73 4-4. 光學性質分析 75 4-4-1. UV/Vis吸收光譜及PL發光光譜 75 4-5. 電化學性質分析 78 4-6. 高分子發光二極體元件特性 80 4-6-1 元件結構與能階 80 4-6-2 TAZS應用於電洞緩衝層之元件特性 81 4-7. 元件表現探討 85 4-7-1 材料的成膜性質 86 4-7-2 單一載子元件(Single-carrier Devices) 88 第五章 結論 91 參考文獻 93

    1. 陳金鑫、黃孝文, 有機電激發光材料與元件. 五南圖書出版股份有限公司. 2005.
    2. 劉博文, 光電元件導論. 全威圖書出版股份有限公司. 2005.
    3. M. Pope, P. Magnante, and H.P. Kallmann, Electroluminescence in Organic Crystals. Journal of Chemical Physics, 1963. 38(8): p. 2042.
    4. C.W. Tang and S.A. Vanslyke, Organic Electroluminescent Diodes. Applied Physics Letters, 1987. 51(12): p. 913-915.
    5. J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K. Mackay, R.H. Friend, P.L. Burn, and A.B. Holmes, Light-Emitting-Diodes Based on Conjugated Polymers. Nature, 1990. 347(6293): p. 539-541.
    6. 段啟聖, 化工資訊雜誌與商情. 2005. p. p. 40.
    7. H. Shirakawa, E.J. Louis, A.G. Macdiarmid, C.K. Chiang, and A.J. Heeger, Synthesis of Electrically Conducting Organic Polymers: Halogen Derivatives of Polyacetylene, (CH)X. Journal of the Chemical Society-Chemical Communications, 1977(16): p. 578-580.
    8. C.K. Chiang, C.R. Fincher, Y.W. Park, A.J. Heeger, H. Shirakawa, E.J. Louis, S.C. Gau, and A.G. Macdiarmid, Electrical-Conductivity in Doped Polyacetylene. Physical Review Letters, 1977. 39(17): p. 1098-1101.
    9. 郭昭輝, 塑膠資訊雜誌, 2002.
    10. B. Valeur, Molecular Fluorescence: Principles and Applications, in Wiley-VCH Verlag GmbH. 2001.
    11. J.R. Lakowicz, Principles of Fluorescence Spectroscopy. 3rd edition ed. 2006.
    12. O.K. Volkhard May, Charge and Energy Transfer Dynamics in Molecular Systems. 2nd revised and enlarged edition ed. 2004.
    13. Z.H. Kafafi, Organic Electroluminescence. 2005.
    14. L.T. Corporation, Fluorescence Resonance Energy Transfer (FRET)-Note 1.2.
    15. W.T. Yip and D.H. Levy, Excimer/exciplex formation in van der Waals dimers of aromatic molecules. Journal of Physical Chemistry, 1996. 100(28): p. 11539-11545.
    16. S. Beck, A. Hallam, and A.M. North, Excimer and charge-transfer complex trapping of excitons in carbazole containing polymers. Polymer, 1979. 20(10): p. 1177-1179.
    17. J. Guillet, Polymer Photophysics and Photochemistry. 1985.
    18. K. Walzer, B. Maennig, M. Pfeiffer, and K. Leo, Highly efficient organic devices based on electrically doped transport layers. Chemical Reviews, 2007. 107(4): p. 1233-1271.
    19. 陳信宏、陳雲, 中工高雄會刊. 2006. p. 72.
    20. 黃孝文、陳雲, 化工資訊月刊. 2001. p. 8.
    21. G.G. Malliaras, J.R. Salem, P.J. Brock, and C. Scott, Electrical characteristics and efficiency of single-layer organic light-emitting diodes. Physical Review B, 1998. 58(20): p. 13411-13414.
    22. C.C. Wu, J.C. Sturm, R.A. Register, J. Tian, E.P. Dana, and M.E. Thompson, Efficient organic electroluminescent devices using single-layer doped polymer thin films with bipolar carrier transport abilities. Ieee Transactions on Electron Devices, 1997. 44(8): p. 1269-1281.
    23. U. Mitschke and P. Bauerle, The electroluminescence of organic materials. Journal of Materials Chemistry, 2000. 10(7): p. 1471-1507.
    24. Y. Shirota and H. Kageyama, Charge carrier transporting molecular materials and their applications in devices. Chemical Reviews, 2007. 107(4): p. 953-1010.
    25. J.L. Segura, The chemistry of electroluminescent organic materials. Acta Polymerica, 1998. 49(7): p. 319-344.
    26. Y. Yang and A.J. Heeger, A new architecture for polymer transistors. Nature, 1994. 372(6504): p. 344-346.
    27. K.M. Coakley and M.D. McGehee, Conjugated polymer photovoltaic cells. Chemistry of Materials, 2004. 16(23): p. 4533-4542.
    28. H.A.M. van Mullekom, J. Vekemans, E.E. Havinga, and E.W. Meijer, Developments in the chemistry and band gap engineering of donor-acceptor substituted conjugated polymers. Materials Science & Engineering R-Reports, 2001. 32(1): p. 1-40.
    29. M.C. Choi, Y. Kim, and C.S. Ha, Polymers for flexible displays: From material selection to device applications. Progress in Polymer Science, 2008. 33(6): p. 581-630.
    30. J.J. Liang, L. Li, X.F. Niu, Z.B. Yu, and Q.B. Pei, Elastomeric polymer light-emitting devices and displays. Nature Photonics, 2013. 7(10): p. 817-824.
    31. A.J. Heeger, Semiconducting and metallic polymers: The fourth generation of polymeric materials. Journal of Physical Chemistry B, 2001. 105(36): p. 8475-8491.
    32. E.H. Martin and J. Hirsch, Determination of carrier mobility in plastics by a time-of-flight method. Solid State Communications, 1969. 7(10): p. 783-+.
    33. A.P. Kulkarni, C.J. Tonzola, A. Babel, and S.A. Jenekhe, Electron transport materials for organic light-emitting diodes. Chemistry of Materials, 2004. 16(23): p. 4556-4573.
    34. G.G. Malliaras and J.C. Scott, The roles of injection and mobility in organic light emitting diodes. Journal of Applied Physics, 1998. 83(10): p. 5399-5403.
    35. D. Grozea, A. Turak, Y. Yuan, S. Han, Z.H. Lu, and W.Y. Kim, Enhanced thermal stability in organic light-emitting diodes through nanocomposite buffer layers at the anode/organic interface. Journal of Applied Physics, 2007. 101(3): p. 3522.
    36. S.M. Tadayyon, H.M. Grandin, K. Griffiths, P.R. Norton, H. Aziz, and Z.D. Popovic, CuPc buffer layer role in OLED performance: a study of the interfacial band energies. Organic Electronics, 2004. 5(4): p. 157-166.
    37. E.W. Forsythe, M.A. Abkowitz, and Y.L. Gao, Tuning the carrier injection efficiency for organic light-emitting diodes. Journal of Physical Chemistry B, 2000. 104(16): p. 3948-3952.
    38. F. Huang, H.B. Wu, and Y. Cao, Water/alcohol soluble conjugated polymers as highly efficient electron transporting/injection layer in optoelectronic devices. Chemical Society Reviews, 2010. 39(7): p. 2500-2521.
    39. Z.X. Gao, R.J. Huang, Y. Lin, Y.Q. Zheng, Y.H. Liu, and B. Wei, Reduced turn-on voltage and improved efficiency with free interfacial energy barrier in organic light-emitting diodes. Synthetic Metals, 2015. 207: p. 26-30.
    40. N. Miyaura and A. Suzuki, Stereoselective synthesis of arylated (e)-alkenes by the reaction of alk-1-enylboranes with aryl halides in the presence of palladium catalyst. Journal of the Chemical Society-Chemical Communications, 1979(19): p. 866-867.
    41. N. Miyaura and A. Suzuki, Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chemical Reviews, 1995. 95(7): p. 2457-2483.
    42. M.L. Petrus, R.K.M. Bouwer, U. Lafont, S. Athanasopoulos, N.C. Greenham, and T.J. Dingemans, Small-molecule azomethines: organic photovoltaics via Schiff base condensation chemistry. Journal of Materials Chemistry A, 2014. 2(25): p. 9474.
    43. D. Sęk, M. Lapkowski, H. Dudek, K. Karoń, H. Janeczek, and B. Jarząbek, Optical and electrochemical properties of three-dimensional conjugated triphenylamine-azomethine molecules. Synthetic Metals, 2012. 162(11-12): p. 1046-1051.
    44. D. Sek, M. Grucela-Zajac, M. Krompiec, H. Janeczek, and E. Schab-Balcerzak, New glass forming triarylamine based azomethines as a hole transport materials: Thermal, optical and electrochemical properties. Optical Materials, 2012. 34(8): p. 1333-1346.
    45. A. Wesley Jeevadason, K. Kalidasa Murugavel, and M.A. Neelakantan, Review on Schiff bases and their metal complexes as organic photovoltaic materials. Renewable and Sustainable Energy Reviews, 2014. 36: p. 220-227.
    46. A. Iwan, E. Schab-Balcerzak, M. Grucela-Zajac, and L. Skorka, Structural characterization, absorption and photoluminescence study of symmetrical azomethines with long aliphatic chains. Journal of Molecular Structure, 2014. 1058: p. 130-135.
    47. W.M.K.W.M. Zin, Novel conjugated Schiff-Base compounds. 2004, Durham University.
    48. A.M. Abu-Dief and I.M.A. Mohamed, A review on versatile applications of transition metal complexes incorporating Schiff bases. Beni-Suef University Journal of Basic and Applied Sciences, 2015. 4(2): p. 119-133.
    49. T. Soderberg, Organic Chemistry With a Biological Emphasis. 2016.
    50. P. Kathirgamanathan, S. Surendrakumar, J. Antipan-Lara, S. Ravichandran, Y.F. Chan, V. Arkley, S. Ganeshamurugan, M. Kumaraverl, G. Paramswara, A. Partheepan, V.R. Reddy, D. Bailey, and A.J. Blake, Novel lithium Schiff-base cluster complexes as electron injectors: synthesis, crystal structure, thin film characterisation and their performance in OLEDs. Journal of Materials Chemistry, 2012. 22(13): p. 6104.
    51. D. Sek, M. Siwy, M. Grucela, G. Malecki, E.M. Nowak, G. Lewinska, J. Santera, K. Laba, M. Lapkowski, S. Kotowicz, and E. Schab-Balcerzak, New anthracene-based Schiff bases: Theoretical and experimental investigations of photophysical and electrochemical properties. Spectrochim Acta A Mol Biomol Spectrosc, 2017. 175: p. 24-35.
    52. C.O. Sánchez, J.C. Bèrnede, L. Cattin, M. Makha, and N. Gatica, Schiff base polymer based on triphenylamine moieties in the main chain. Characterization and studies in solar cells. Thin Solid Films, 2014. 562: p. 495-500.
    53. L. Wang, S. Jiao, W. Zhang, Y. Liu, and G. Yu, Synthesis, structure, optoelectronic properties of novel zinc Schiff-base complexes. Chinese Science Bulletin, 2013. 58(22): p. 2733-2740.
    54. V. Nishal, D. Singh, A. Kumar, V. Tanwar, I. Singh, R. Srivastava, and P.S. Kadyan, A new zinc–Schiff base complex as an electroluminescent material. Journal of Organic Semiconductors, 2014. 2(1): p. 15-20.
    55. C.M. Che, C.C. Kwok, S.W. Lai, A.F. Rausch, W.J. Finkenzeller, N. Zhu, and H. Yersin, Photophysical properties and OLED applications of phosphorescent platinum(II) Schiff base complexes. Chemistry, 2010. 16(1): p. 233-47.
    56. L. Zhou, C.L. Kwong, C.C. Kwok, G. Cheng, H. Zhang, and C.M. Che, Efficient red electroluminescent devices with sterically hindered phosphorescent platinum(II) Schiff base complexes and iridium complex codopant. Chem Asian J, 2014. 9(10): p. 2984-94.
    57. N.S. Sariciftci, L. Smilowitz, A.J. Heeger, and F. Wudl, Photoinduced electron-transfer from a conducting polymer to buckminsterfullerene. Science, 1992. 258(5087): p. 1474-1476.
    58. A. Gupta and N. Kumar, A review of mechanisms for fluorescent "turn-on' probes to detect Al3+ ions. Rsc Advances, 2016. 6(108): p. 106413-106434.

    無法下載圖示 校內:2019-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE