| 研究生: |
郭聰敏 Kuo, Tsung-Min |
|---|---|
| 論文名稱: |
微熱動式雙層懸臂樑之尺寸最佳化分析 Optimal dimension analysis of thermal bimorph microcantilever |
| 指導教授: |
陳榮盛
Chen, R.S. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 160 |
| 中文關鍵詞: | 最佳化 、微機電 、微熱動式雙層懸臂樑 |
| 外文關鍵詞: | MEMS, thermal bimorph microcantilever, optimization |
| 相關次數: | 點閱:78 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文係針對微熱動式雙層懸臂樑(Thermal bimorph microcantilever),利用ANSYS有限元素分析軟體,評估最佳熱電阻尺寸配置方式,並分析所有參數變化與輸出行為間之關係,最後,利用最佳化方法,在合理之設計變數變化範圍內,找出各種不同目標下之最佳設計。
研究結果顯示,維持多晶矽熱電阻斷面積與電阻值固定的前提下,即適當調整熱電阻厚度並以長度之變化補足電阻差值,將可獲得兼顧端點位移與輸出力之最佳熱電阻尺寸設計。而在最佳熱電阻尺寸配置與固定電壓差輸入下,改變微懸臂樑上下層材料之寬度與厚度,將對熱量傳遞與結構勁度之影響甚鉅,進而造成不同之端點位移與輸出力,故分析結果將有助於微熱動式雙層懸臂樑整體特性的瞭解。最後,對寬度相同與寬度不同兩種分析形式進行最佳化分析。由於各種不同目標下之最佳化分析皆有不同結果,因此,可根據設計使用上之要求,選擇符合需要的分析形式,以獲得最佳的設計。
This thesis focuses on thermal bimorph microcantilever. By using the finite element software, ANSYS, evaluating the best dimension arrangement of heat resistance and analyzing the correlations between all parameters and output results. Eventually, attain the optimal designs of different objective under the reasonable ranges of design variables with optimization method.
The research results demonstrate that the best heat resistor dimension arrangement concerning tip deflection and output force could be achieved on the premise of sustaining the cross-section area of poly-silicon heat resistor and resistance value, that is, adequately adjusting the thickness of heat resistor and compensate the difference of resistance value by moderating the length of heat resistor. Under the best heat resistor afore-mentioned, changing the width and thickness of bottom and top layer of microcantilever will drastically affect the heat transform phenomenon and stiffness of entire structure. Furthermore, resulting in different tip deflection and output force. The results are of great help to clarify the features of whole thermal bimorph microcantilaver. And concludes the research with optimizing the microcantilever with two analytic styles. Because different optimal goals result in different results, the optimal design can be reached by choosing the most suitable analytic style under the required specification.
參考文獻
1. S. Timoshenko, “Analysis of Bi-metal Thermostats,” J. Opt. Soc. Amer., Vol. 11, pp. 233, 1925.
2. Riethmuller, W., and Benecke, W., “Thermally Excited Silicon Microactuators,” IEEE Transactions on Electron Devices, Vol. 35, No. 6, pp. 758, 1988.
3. Doring, C., Grauer, T., Marek, J., Mettner, M.S., Trah, H.P., and Williams, M., “Micromachined Thermoelectrically Driven Cantilever Structures for Fluid Jet Deflection,” Micro Electro Mechanical System, 1992.
4. Buser, R.A., De Rooij, N.F., Tischhauser, H., Dommann, A., and Staufert, G., “Biaxial Scanning Mirror Activated by Bimorph Structures for Medical Applications,” Sensors and Actuators A, Vol. 31, pp. 29-34, 1992.
5. Moser, D., Brand, O., and Bates, H., “A CMOS Compatible Thermally Excited Silicon Oxide Beam Resonator with Aluminum Mirror,” IEEE Micro Electro Mechanical System, 1991.
6. Suzuki, Y., “Fabrication and Evaluation of Flexible Microgripper,” Jpn. J. Appl. Phys., Vol. 33, pp. 2107-2112, 1994.
7. Ataka, M., Omodaka, A., Takeshima, N., and Fujita, H., “Fabrication and Operation of Polyimide Bimorph Actuators for Ciliary Motion System,” Journal of Microelectromechanical Systems, Vol. 2, No. 6., 1993.
8. J. Buhler, J. Funk, O. Paul, F. P. Steiner, H. Baltes, “Thermally Actuated CMOS Micromirror,” Sensors and Actuators A, Vol. 46-47, pp. 572-575, 1995.
9. 林育生、潘吉祥、徐文祥,“熱動式雙層板微型致動器”,中國機械工程學刊,第十八卷第六期第525~531頁,民國86年。
10. T. J. Lardner, R. R. Archer, “Mechanics of Solids – an introduction,” McGraw-Hill, Mechanical Engineering Series, U.S.A. 1996.
11. W. H. Chu, M. Mehregany, R. L. Mullen, “Analysis of Tip Deflection and Force of a Bimetallic Cantilever Microactuator,” J. Micromech. Microeng., Vol. 3, pp. 4-7, 1993.
12. Irving H. Shames, Francis A. Cozzarelli “Elastic and Inelastic Stress Analysis” Revised Printing, Taylor & France. U.S.A. 1997.
13. W. F. Chen, and D. J. Han, Plasticity for Structural Engineers, Springer-Verlag, New York, 1988.
14. J. N. Reddy, An Introduction to The Finite Element Method, McGraw-Hill, New York, 1993.
15. 王至勤,有限元素法,曉園出版社,台北市,民國74年。
16. ANSYS Menu, “The Element Library,” Ch4. Element Reference 5.7 March 2001.
17. Peter Kohnme Ph. D., “Shape Functions,” ANSYS, Inc Theory Release 5.7, Ch. 12, pp. 403-404, March 2001.
18. H. Guckel, J. Klein, T. Christenson, K. Skrobis, M. Laudon, E. G. Lovell, ”Thermo-magnetic Metal Flexure Actuators,” Proc., Solid-State Sensor and Actuator Workshop (Hilton Head ’92), pp. 73-75, June 1992.
19. Frank P. Incropera, David P. DeWitt “Fundamentals of Heat and Mass Transfer,” Forth Edition, John Wiley & Sons, Inc. 1996.
20. ANSYS Menu, “Thermal-Electric Element,” Ch11. Table of Contents Theory Reference 5.7, March 2001.
21. 王柏村,振動學,全華科技圖書股份有限公司,台北市,民國86年。
22. Peter Kohnme Ph. D., “Eigenvalue & Eigenvector Extraction,” ANSYS, Inc Theory Release 5.7, Ch. 15, pp. 1010-1018, March 2001.
23. A. C. Nashby, J. J. Shiegowski, J. H. Smith, S. Montague, C. C. Apblett, J. G. Fleming, “Application of Chemical-Mechanical Polishing Planarization of Surface-Micromachined Devices,” Proc. Solid-State Sensor and Actuator Workshop, pp. 48-53, 1996.
24. Peter Kohnme Ph. D., “Design Optimization,” ANSYS, Inc Theory Release 5.7, Ch. 20, pp. 1167-1188, March 2001.