簡易檢索 / 詳目顯示

研究生: 詹逸涵
Chan, Yi-Han
論文名稱: Amberlite IR-120陽離子交換樹脂於游離脂肪酸甲酯化之研究
Study on Esterification of Free Fatty Acids with Methanol Using Amberlite IR-120 as a Catalyst
指導教授: 陳炳宏
Chen, Bing-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 70
中文關鍵詞: 生質柴油酯化反應陽離子交換樹脂棕櫚酸甲酯
外文關鍵詞: Biodiesel, Esterification, Cation-exchange resin, Amberlite IR-120, Free Fatty Acid, Water
相關次數: 點閱:91下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來由於石油價格飆漲,加上大量使用石化能源造成的環境污染,具有生物可分解性,無毒與可再生等優點的生質柴油作為替代能源越來越受重視。生質柴油為脂肪酸酯的混合物,通常由油脂與短碳鏈醇轉酯化而來,油脂中含有三酸甘油脂與一部分游離脂肪酸,根據油脂種類不同,脂肪酸的含量也不同,在酸觸媒的催化下,脂肪酸會與醇類進行酯化反應。酸觸媒的種類繁多,主要可分為勻相酸觸媒與非勻相酸觸媒,非勻相觸媒因具有分離容易,不易腐蝕反應器以及可被回收再利用等優點,故本實驗採用非勻相酸觸媒來進行脂肪酸甲酯化反應。
    在本研究中,以棕櫚酸與甲醇進行酯化反應合成棕櫚酸甲酯,使用陽離子交換樹酯Amberlite IR-120非勻相酸觸媒催化反應,藉由改變不同反應參數如反應溫度、觸媒負載量、酸醇莫耳比、轉速與反應時間等來建立較佳反應條件。考慮到離子交換樹脂吸水的特性以及原料可能含有水分,實驗中也試著探討樹脂本身一開始含水量與原料中添加水分對反應的影響。
    從本研究發現,Amberlite IR-120陽離子交換樹脂在酯化反應中有不錯的催化效果,在溫度60°C,轉速600 rpm,醇酸比6:1,觸媒使用量20 wt%的條件下反應2個小時,轉化率可達90.98%。原料所含水分確實會降低反應速率,但對於系統是兩相或一相並沒有太大的差異。

    Biodiesel, a mixture of fatty esters, has become more and more important as an alternative diesel fuel, since it is made from renewable sources and possesses biodegradability, nontoxicity and reusability. In general, biodiesel is produced from transesterification and esterification of oils and fatty acids with alcohols of low molecular weight over adequate catalysts. Among all catalysts, alkaline catalysts cannot be properly used in those oils with high free-fatty-acid (FFA) content as well as moisture due to saponification. In contrast, homogeneous acidic catalysts are commonly used to catalyze esterification of free fatty acids with alcohols. However, it is corrosive and very difficult to remove excess acid from product. Heterogeneous acidic catalysts can overcome this problem. In this study, the cation-exchange resin - Amberlite IR-120 as a catalyst has been studied in catalytic esterification of palmitic acid with methanol. Effects of various parameters such as reaction temperature, catalyst loading, molar ratio of alcohol to oil, and reaction time have been carefully investigated. Reacting at 60 C, 600 rpm, methanol-to-fatty acid ratio at 6:1 and 20 wt% catalyst, it could reach a conversion of 90.98%. In this dissertation, we also discuss the effect of water on Amberlite IR-120’s catalytic esterification, which shows water could inhibit esterification both in one phase and two phase system.

    摘要 I 致謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 第一章  緒論 1 1-1前言 1 1-2研究動機與目的 3 第二章  文獻回顧 5 2-1生質柴油的來源 5 2-2改善植物油燃料缺點之方法 9 2-3製造生質柴油的技術 13 2-3-1酯化反應 13 2-3-1-1 勻相酸催化 13 2-3-1-2 非勻相酸催化 14 2-3-2轉酯化反應 17 2-3-2-1鹼催化 17 2-3-2-2 酸催化 22 2-3生質柴油的特性 27 2-4生質柴油的規範 30 2-5生質柴油的發展 33 2-5-1國際生質柴油的發展 33 2-5-2國內生質柴油的發展 35 第三章 實驗 37 3-1實驗藥品 37 3-2實驗設備 38 3-3觸媒預處理 39 3-4脂肪酸甲酯檢量線製作 39 3-5酯化反應 39 3-6脂肪酸甲酯轉化率分析 40 3-7觸媒再回收利用 40 3-8觸媒特性分析 40 第四章 結果與討論 44 4-1酯化反應參數探討 44 4-1-1觸媒酸洗與無酸洗 44 4-1-2酯化反應速率式 45 4-1-3反應溫度的影響 47 4-1-4轉速的影響 48 4-1-5酸醇莫耳比的影響 49 4-1-6觸媒使用量的影響 50 4-1-7脂肪酸碳鏈長度的影響 51 4-1-8樹脂含水量的影響 53 4-2 GC分析與自動滴定儀分析比較 55 4-3系統添加不同水量對反應的影響 56 4-4觸媒再使用性測試 59 4-5 轉酯化反應 63 第五章  結論 66 5-1 結論 66 5-2 未來工作 67 參考文獻 68

    Alcantara, R.; Amores, J.; Canoira, L.; Fidalgo, E.; Franco, M.J.; Navarro, A. Catalytic production of biodiesel from soy-bean oil, used frying oil and tallow. Biomass and Bioenergy. 2000;18(6):515-527.
    Chen, H.; Wang, J.F. Biodiesel from transesterification of cottonseed oil by heterogeneous catalysis. In: Hyun-Ku Rhee, I.-S.N.; Jong Moon, P., editors. Vol. Volume 159, Studies in Surface Science and Catalysis: Elsevier; 2006. p. 153-156.
    Demirbas, A. Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Progress in Energy and Combustion Science. 2005;31(5-6):466-487.
    Demirbas, A. Importance of biodiesel as transportation fuel. Energy Policy. 2007;35(9):4661-4670.
    Felizardo, P.; Neiva Correia, M.J.; Raposo, I.; Mendes, J.F.; Berkemeier, R.; Bordado, J.M. Production of biodiesel from waste frying oils. Waste Management. 2006;26(5):487-494.
    Freedman, B.; Pryde, E.H.; Mounts, T.L.; USDA, A. Variables affecting the yields of fatty esters from transesterified vegetable oils. Journal of the American Oil Chemists' Society. 1984;61(10):1638-1643.
    Granados, M.L.; Poves, M.D.Z.; Alonso, D.M.; Mariscal, R.; Galisteo, F.C.; Moreno-Tost, R.; Santamaría, J.; Fierro, J.L.G. Biodiesel from sunflower oil by using activated calcium oxide. Applied Catalysis B: Environmental. 2007;73(3-4):317-326.
    Haas, M.J. The interplay between feedstock quality and esterification technology in biodiesel production. Lipid Technology. 2004;16(1):7-11.
    Jackson, M.A.; Mbaraka, I.K.; Shanks, B.H. Esterification of oleic acid in supercritical carbon dioxide catalyzed by functionalized mesoporous silica and an immobilized lipase. Applied Catalysis A: General. 2006;310:48-53.
    Jitputti, J.; Kitiyanan, B.; Rangsunvigit, P.; Bunyakiat, K.; Attanatho, L.; Jenvanitpanjakul, P. Transesterification of crude palm kernel oil and crude coconut oil by different solid catalysts. Chemical Engineering Journal. 2006;116(1):61-66.
    Kiss, A.A.; C, A.; Dimian, G.R. Solid Acid Catalysts for Biodiesel Production –-Towards Sustainable Energy. Advanced Synthesis & Catalysis. 2006;348(1-2):75-81.
    Knothe, G.; Steidley, K.R. Kinematic viscosity of biodiesel fuel components and related compounds. Influence of compound structure and comparison to petrodiesel fuel components. Fuel. 2005;84(9):1059-1065.
    Kouzu, M.; Kasuno, T.; Tajika, M.; Sugimoto, Y.; Yamanaka, S.; Hidaka, J. Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production. Fuel. 2008;87(12):2798-2806.
    Kulkarni, M.G.; Dalai, A.K.; Bakhshi, N.N. Utilization of green seed canola oil for biodiesel production. Chemical Technology and Biotechnology. 2006;81(12):1886-1893.
    Lam, M.K.; Lee, K.T.; Mohamed, A.R. Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: A review. Biotechnology Advances. 2010;28(4):500-518.
    Leung, D.Y.C.; Wu, X.; Leung, M.K.H. A review on biodiesel production using catalyzed transesterification. Applied Energy. 2010;87(4):1083-1095.
    Liu, Y.; Lotero, E.; Goodwin Jr, J.G. Effect of carbon chain length on esterification of carboxylic acids with methanol using acid catalysis. Journal of Catalysis. 2006;243(2):221-228.
    Lotero, E.; Liu, Y.; Lopez, D.E.; Suwannakarn, K.; Bruce, D.A.; Goodwin, J.G. Synthesis of Biodiesel via Acid Catalysis. Ind Eng Chem Res. 2005;44(14):5353-5363.
    Ma, F.; Hanna, M.A. Biodiesel production: a review. Bioresource Technology. 1999;70(1):1-15.
    Meher, L.C.; Vidya Sagar, D.; Naik, S.N. Technical aspects of biodiesel production by transesterification--a review. Renewable and Sustainable Energy Reviews. 2006;10(3):248-268.
    Melero, J.A.; Iglesias, J.; Morales, G. Heterogeneous acid catalysts for biodiesel production: current status and future challenges Green Chem. 2005;11:1285-1308.
    Park, Y.-M.; Lee, D.-W.; Kim, D.-K.; Lee, J.-S.; Lee, K.-Y. The heterogeneous catalyst system for the continuous conversion of free fatty acids in used vegetable oils for the production of biodiesel. Catalysis Today. 2008;131(1-4):238-243.
    Peng, B.-X.; Shu, Q.; Wang, J.-F.; Wang, G.-R.; Wang, D.-Z.; Han, M.-H. Biodiesel production from waste oil feedstocks by solid acid catalysis. Process Safety and Environmental Protection. 2008;86(6):441-447.
    聯合國網站,http://www.un.org/
    經濟部能源局網站,http://www.moeaboe.gov.tw
    United States of Department Agriculture網站,http://www.usda.gov/wps/portal/usda/usdahome
    謝志強,歐洲生質柴油發展勢態,ITIS智網,2007年
    董懷仁,廢食用油與高酸油製造生質柴油(Biodiesel)之反應參數探討,國立清華 大學化學工程研究所碩士論文,2006
    楊世傑,大豆油轉酯化反應研究,國立嘉義大學應用化學研究所,2007
    霍俊文,以硫酸處理之二氧化鋯觸媒對於游離脂肪酸甲酯化反應之研究,國立成功大學化學工程學系碩士論文,2010

    下載圖示 校內:2021-12-31公開
    校外:2021-12-31公開
    QR CODE