簡易檢索 / 詳目顯示

研究生: 阮智祺
Ruan, Zhi-Gi
論文名稱: 微分再生核近似法於圓柱殼彈性挫屈之分析
指導教授: 王永明
Wang, Yung-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 46
中文關鍵詞: 挫屈無元素法圓柱殼
外文關鍵詞: meshless method, cylindrical shells, buckling
相關次數: 點閱:82下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文是以無元素法(meshfree)理論中發展出來的微分再生核近似法(Differential Reproducing Kernel Approximate Methods, DRKM)來解析一薄殼圓柱彈性挫屈的問題,利用DRKM以離散點建立重生核函數,以重生一微分函數的方式,迅速建立節點間各階微分導數關係,以之建立該圓柱殼挫屈特徵方程式。本文採用 的薄殼理論,其考慮薄膜應力的影響,可以較準確的描述彈性殼的行為。在一維度分析時,需先假定環方向的挫屈模數(buckling mode),以一維的變形函數代入控制微分方程組。引入所解之邊界條件時,利用本文中所介紹處理邊界的方法,將邊界條件引入特徵方程式中並求解,以驗證DRKM對於一薄殼圓柱挫屈問題的適用性。

    none

    摘要.........................................................Ⅰ 誌謝.........................................................Ⅱ 目錄.........................................................Ⅲ 表目錄.......................................................Ⅴ 圖目錄.......................................................Ⅵ 第一章 緒論...................................................1 1.1 前言.....................................................1 1.2 文獻回顧.................................................3 1.3 本文架構.................................................5 第二章 微分再生核近似法理論...................................7 2.1 離散的再生核近似.........................................7 2.2 重生核形狀函數的微分.....................................9 第三章 圓柱薄殼挫屈問題......................................13 3.1 控制方程式與邊界條件....................................13 3.2 數值分析方法............................................18 第四章 數值算例..............................................24 4.1 一維度挫屈分析..........................................24 4.2 二維度挫屈分析..........................................26 4.3 微分重生次數對精度的影響................................28 第五章 結論..................................................30 參考文獻.....................................................32

    Belytschko, T., Gu, L. and Lu, Y. Y. Fracture and crack growth by element-free Galerkin methods, Model. Simul. Mater. Sci. Engrg. 2, pp519-534, 1994.

    Belytschko, T., Krongauz, Y., Orang, D. and Fleming, N. Meshless method: An Overview and Recent Development, Computer Method in Applied Mechanics & Engineering, 139, pp3-47, 1996.

    Don O. B. Buckling of bars, plates, and shells, McGraw-Hill, New York, 1975

    W. Stress in shells(2nd edn), Springer-Verlag, Berlin, 1973.

    Kim S.E. & Kim C.S. Buckling strength of cylidricalshell and tank subjected to axially compressive loads, Thin-Wall Structures 40, pp329-353, 2002.

    Liu, W. K., Jun, S. and Zhang, Y. F. Reproducing kernel particle methods, Int. J. Number. Methods Engrg.20, 1081-1106, 1995

    Lucy,L.B. Anumerical approach to the testing of the fission hypothesis, The Astron.J. 8, 12, 1013-1024(1977).

    Mirfakhraei P. & Redekop D. Buckling of circular cylindrical shells by the Differential Quadrature Method, International Journal of Pressure Vessels and Piping 75, pp347-353, 1998.

    Nalroles, B., Touzot, G. and Villon, P. Generalizing the finite element method diffuse approximation and diffuse element, Comput. Mech. 10, 307-318, 1992.

    Oñate, E., Idelsohn, S., Zienkiewicz, O. C. Taylor, R. L. and Sacco, C. A Stabilized finite point method for analysis of fluid mechanics problems, Computer Method in Applied Mechanics & Engineering, 139, 315-346, 1996.

    Vodenitcharova T. & Ansourian P. Buckling of circular cylindrical shells subject to uniform lateral pressure Eng. Struct. 18, pp604-614, 1996.

    Yamaki N. Elastic stability of circular cylindrical shells, North Holland, Amsterdam, 1984

    下載圖示 校內:立即公開
    校外:2004-07-09公開
    QR CODE