| 研究生: |
周仕勳 Chou, Shih-Hsun |
|---|---|
| 論文名稱: |
以反覆三軸Ko壓縮試驗探討週期性靜水壓升降對飽和顆粒性土壤壓縮特性之影響 Study on compressibility of saturated, granular soils subjected to periodic variations of hydrostatic pressure with triaxial Ko controlled consolidation system |
| 指導教授: |
張文忠
Chang, Wen-Jong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 無凝聚性土壤 、Ko狀態 、反覆荷重 、壓縮行為 、震陷理論 |
| 外文關鍵詞: | granular soil, Ko condition, repeated loading, compressibility, shakedown theory |
| 相關次數: | 點閱:139 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現有水文地質調查結果顯示,台灣雲林地區沉陷之部分來自於含水層,而週期性地下水壓的變化對於砂性土壤壓縮行為的影響仍有待釐清,本研究主軸為探討土壤元素於側向束縛時因地下水壓週期性升降引致之壓縮行為,研究以自行研發之自動化三軸設備系統進行三軸Ko反覆壓縮試驗,此系統整合伺服馬達與氣電轉換閥之控制與感測器資料擷取,可進行高自動化與精度之試驗。一般反覆壓縮試驗多以於垂直方向產生軸差應力的方式進行,但地下水壓引致之有效應力變化,應以試體孔隙水壓的升降模擬,此二者其應力路徑不同,因此本研究以維持垂直軸向總應力並控制反水壓升降之反水壓控制法進行數個階段Ko反覆壓縮試驗;研究以乾淨渥太華砂與含雲母細粒料之渥太華試體進行試驗,試驗結果顯示飽和顆粒性土壤因孔隙水壓升降造成之壓縮行為與震陷理論相符,且反覆壓縮之效應不可忽略。
Hydrogeological investigations in Yun-Lin area, Taiwan reveals that significant portions of ground subsidence occurred in aquifer layers, which are made of mainly granular soils. To identify the mechanism of subsidence in this area, the compressibility of granular soils due to periodic variations of hydrostatic pressure still need to be clarified. A triaxial Ko controlled consolidation system integrating electro-pneumatic transducers (E/P transducers), a direct drive servo motor and a data acquisition system was developed to,perform highly accurate and automatic Ko consolidation tests on remold specimen of Ottawa sand mixed with Mica fines. To simulate the field stress conditions due to periodical variation of hydrostatic pressure, a controlled back pressure method, which periodically varied the back pressure under a constant vertical total stress and zero lateral strain, was adopted. The testing results reveal that the the compressibility of saturated granular soils due to the periodical variation sof hydrostatic pressure is significant and the behaviors agree with the shakedown theory.
1. 蔡函叡(2013),「飽和顆粒性土壤於KO反覆荷重下之壓縮行為探討」,國立成功大學土木工程所碩士論文
2. 楊樹榮(2002) ,「路基土壤反覆載重下之回彈與塑性行為及模式建構」,國立中央大學土木工程所碩士論文
3. 洪若安(2006),「非擾動粉土細砂試體之KO壓密三軸試驗」,國立交通大學土木工程所碩士論文
4. 劉全修(2008),「台灣中南部粉土質細砂的壓縮性」,國立交通大學土木工程所碩士論文
5. 楊孟綸(2011),「雲母含量對液化後砂土殘餘強度之研究」,國立成功大學土木工程所碩士論文
6. 李政忠(2011),「雲母含量對顆粒性土壤極限狀態常數之影響」,國立成功大學土木工程所碩士論文
7. 工業技術研究院(2009),「地層下陷分層監測點評析建立及試驗分析計畫」,經濟部水利署
8. Brown, S. F., (1996), "Soil mechanics in pavement engineering." Geotechnique 46, No. 3, pp. 383-426
9. Bishop, A. W., and Henkel, D. J., (1962), “The Measurement of Soil Properties.” Edward Amold Ltd., London, Second edition
10. Chang, W. J. and Hong, M. L.,(2008), “Effect of Clay Content on Liquefaction Characteristics of Gap-graded Clayey Sands.”Japanese Geotechnical Society, Vol.48, NO.1, pp.101~114
11. Chuhan, F. A., Kjeldstad, A., Bjorlykke, K., and Hoeg K., (2003), “Experimental compression of loose sands: relevance to porosity reduction during burial in sedimentary basins.”Canadian Geotechnical Journal, Vol 40, pp995-1011
12. Hardin, B. O., (1985), “Crushing of Soil Particles.”, Journal of Geotechnical Engineering Division, ASCE, Vol.111,pp.1177-1192
13. Jaky, J., (1944), "The Coefficient of Earth Pressure at Rest." Journal for society of Hungarian Architects and Engineers, Budapest, Hungary, Oct., pp. 355-358
14. Johnson, K. L., (1986), “Plastic Flow, Residual Stresses and Shakedown in Rolling Contact.” Proceedings of the 2nd International Conference on Contact Mechanics and Wear of Rail/Wheel Systems
15. Kasuno, Y. and Masumi, T., (1982), “The Influence of Lateral Strain Controlled Method on Consoidation Tests.” Proceedings, 17th Conference of Japanese Society of Soil Mechanics and Foundation Engineering, pp. 229-232
16. Lambe, T. W. and Whitman, R. V., (1979), “Soil Mechanics SI Version” John Wiley & Sons, Ch.10.
17. Mayne, P. W., and Kulhawy, F. H., (1982), “K0-OCR Relationship in Soil. ” ASCE, GT, Vol. 108, No. 6, pp. 851-872
18. Nakata, Y., Hyodo, M., Hyde, A.F.L., Kato, Y., and Murata, H., (2001), “Microscopic particle crushing of sand subjected to high pressure one-dimensional compression.”Soil and Foundation, Vol. 41, pp. 69-82
19. National Instrument Ltd., (2001), “PID Control Toolset User Manual. ”
20. Parker Motion and Control Ltd., (1995), “Dynaserv DM & DR Direct Drive Servos User Guide.”
21. Pestana, J. M., and Whittle, A. J., (1995), “Compression model for cohesionless soils. ”Geotechnique, Vol. 45(4), pp. 611-631
22. Zhang, J., Wong, T. F., Yanagidani, T., and Davis, D. M., (1990), “Pressure-induced microcracking and gain crushing in Berea and boise sandstions-acoustic emission and quantitative microscopy measurements. ” Mechanics of Materials, Vol. 9, pp.1-15