簡易檢索 / 詳目顯示

研究生: 周仕勳
Chou, Shih-Hsun
論文名稱: 以反覆三軸Ko壓縮試驗探討週期性靜水壓升降對飽和顆粒性土壤壓縮特性之影響
Study on compressibility of saturated, granular soils subjected to periodic variations of hydrostatic pressure with triaxial Ko controlled consolidation system
指導教授: 張文忠
Chang, Wen-Jong
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 100
中文關鍵詞: 無凝聚性土壤Ko狀態反覆荷重壓縮行為震陷理論
外文關鍵詞: granular soil, Ko condition, repeated loading, compressibility, shakedown theory
相關次數: 點閱:139下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現有水文地質調查結果顯示,台灣雲林地區沉陷之部分來自於含水層,而週期性地下水壓的變化對於砂性土壤壓縮行為的影響仍有待釐清,本研究主軸為探討土壤元素於側向束縛時因地下水壓週期性升降引致之壓縮行為,研究以自行研發之自動化三軸設備系統進行三軸Ko反覆壓縮試驗,此系統整合伺服馬達與氣電轉換閥之控制與感測器資料擷取,可進行高自動化與精度之試驗。一般反覆壓縮試驗多以於垂直方向產生軸差應力的方式進行,但地下水壓引致之有效應力變化,應以試體孔隙水壓的升降模擬,此二者其應力路徑不同,因此本研究以維持垂直軸向總應力並控制反水壓升降之反水壓控制法進行數個階段Ko反覆壓縮試驗;研究以乾淨渥太華砂與含雲母細粒料之渥太華試體進行試驗,試驗結果顯示飽和顆粒性土壤因孔隙水壓升降造成之壓縮行為與震陷理論相符,且反覆壓縮之效應不可忽略。

    Hydrogeological investigations in Yun-Lin area, Taiwan reveals that significant portions of ground subsidence occurred in aquifer layers, which are made of mainly granular soils. To identify the mechanism of subsidence in this area, the compressibility of granular soils due to periodic variations of hydrostatic pressure still need to be clarified. A triaxial Ko controlled consolidation system integrating electro-pneumatic transducers (E/P transducers), a direct drive servo motor and a data acquisition system was developed to,perform highly accurate and automatic Ko consolidation tests on remold specimen of Ottawa sand mixed with Mica fines. To simulate the field stress conditions due to periodical variation of hydrostatic pressure, a controlled back pressure method, which periodically varied the back pressure under a constant vertical total stress and zero lateral strain, was adopted. The testing results reveal that the the compressibility of saturated granular soils due to the periodical variation sof hydrostatic pressure is significant and the behaviors agree with the shakedown theory.

    摘要 I Extended Abstract II 誌謝 IX 目錄 X 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1.1. 研究背景 1 1.2. 研究動機 2 1.3. 研究目的 4 1.4. 研究流程 5 1.5. 研究內容概述 7 第二章 文獻回顧 8 2.1. 靜止土壓力係數 8 2.2. Ko三軸試驗方法 9 2.3. 砂土壓縮行為 10 2.4. 震陷理論(Shakedown Theory) 11 2.5. 鋪面在反覆荷重下之行為(Repeating loads in CSSM) 13 第三章 實驗儀器設備 15 3.1. 自動化Ko試驗程式 15 3.1.1. Ko試驗程式介紹 15 3.1.2. PID演算法 20 3.2. Ko三軸試驗系統 23 3.2.1. 軸壓加載系統 23 3.2.2. 壓力控制面板 24 3.2.3. 側向應變量測儀 26 3.2.4. 資料擷取系統 28 第四章 乾淨渥太華砂Ko反覆荷重試驗 35 4.1. 試驗材料之基本物理性質 35 4.2. 試驗方法 36 4.2.1. 試體準備 36 4.2.2. 試體架設與飽和 37 4.2.3. Ko壓密與反覆荷重 40 4.3. 資料分析 42 4.3.1. 軸向應變計算 42 4.3.2. 側向位移計算 43 4.3.3. 體積應變計算 43 4.3.4. 軸向總應力計算 44 4.3.5. 垂直向與側向有效應力計算 46 4.3.6. 應力路徑與Ko值 46 4.4. 試驗結果 47 4.4.1. Ko壓密試驗結果 47 4.4.2. Ko反覆荷重試驗結果 49 第五章 含細粒料試體之Ko反覆荷重試驗 58 5.1試驗材料之基本物理性質 58 5.2試體準備與試驗方法 60 5.2.1. 試體準備 60 5.2.2. 試體架設與飽和 60 5.2.3. Ko壓密與反覆荷重試驗 62 5.3 試驗結果 62 5.3.1. Ko壓密試驗結果 63 5.3.2. Ko反覆荷重試驗結果 65 第六章 渥太華砂試驗結果討論 73 6.1. 不同試驗方法之應力路徑 73 6.2. 現地應力變化情況與反水壓控制法之探討 75 6.3. Ko值經驗公式探討 76 6.4. Ko反覆荷重下應力應變關係探討 77 6.5. 渥太華砂於週期性水壓變化下彈性與塑性應變探討 81 6.5.1. KO反覆荷重試驗下彈性應變量 82 6.5.2. KO反覆荷重試驗下塑性應變量 87 6.5.3. 不同孔隙比及細粒料含量下彈性應變量比較 90 6.5.4. 不同孔隙比及細粒料含量下累積塑性應變量比較 91 6.6. 單向加載與反覆加載之壓縮比較 93 第七章 結論與建議 96 7.1. 結論 96 7.2. 建議 97 參考文獻 98

    1. 蔡函叡(2013),「飽和顆粒性土壤於KO反覆荷重下之壓縮行為探討」,國立成功大學土木工程所碩士論文

    2. 楊樹榮(2002) ,「路基土壤反覆載重下之回彈與塑性行為及模式建構」,國立中央大學土木工程所碩士論文

    3. 洪若安(2006),「非擾動粉土細砂試體之KO壓密三軸試驗」,國立交通大學土木工程所碩士論文

    4. 劉全修(2008),「台灣中南部粉土質細砂的壓縮性」,國立交通大學土木工程所碩士論文

    5. 楊孟綸(2011),「雲母含量對液化後砂土殘餘強度之研究」,國立成功大學土木工程所碩士論文

    6. 李政忠(2011),「雲母含量對顆粒性土壤極限狀態常數之影響」,國立成功大學土木工程所碩士論文

    7. 工業技術研究院(2009),「地層下陷分層監測點評析建立及試驗分析計畫」,經濟部水利署

    8. Brown, S. F., (1996), "Soil mechanics in pavement engineering." Geotechnique 46, No. 3, pp. 383-426

    9. Bishop, A. W., and Henkel, D. J., (1962), “The Measurement of Soil Properties.” Edward Amold Ltd., London, Second edition

    10. Chang, W. J. and Hong, M. L.,(2008), “Effect of Clay Content on Liquefaction Characteristics of Gap-graded Clayey Sands.”Japanese Geotechnical Society, Vol.48, NO.1, pp.101~114

    11. Chuhan, F. A., Kjeldstad, A., Bjorlykke, K., and Hoeg K., (2003), “Experimental compression of loose sands: relevance to porosity reduction during burial in sedimentary basins.”Canadian Geotechnical Journal, Vol 40, pp995-1011
    12. Hardin, B. O., (1985), “Crushing of Soil Particles.”, Journal of Geotechnical Engineering Division, ASCE, Vol.111,pp.1177-1192

    13. Jaky, J., (1944), "The Coefficient of Earth Pressure at Rest." Journal for society of Hungarian Architects and Engineers, Budapest, Hungary, Oct., pp. 355-358

    14. Johnson, K. L., (1986), “Plastic Flow, Residual Stresses and Shakedown in Rolling Contact.” Proceedings of the 2nd International Conference on Contact Mechanics and Wear of Rail/Wheel Systems

    15. Kasuno, Y. and Masumi, T., (1982), “The Influence of Lateral Strain Controlled Method on Consoidation Tests.” Proceedings, 17th Conference of Japanese Society of Soil Mechanics and Foundation Engineering, pp. 229-232

    16. Lambe, T. W. and Whitman, R. V., (1979), “Soil Mechanics SI Version” John Wiley & Sons, Ch.10.

    17. Mayne, P. W., and Kulhawy, F. H., (1982), “K0-OCR Relationship in Soil. ” ASCE, GT, Vol. 108, No. 6, pp. 851-872

    18. Nakata, Y., Hyodo, M., Hyde, A.F.L., Kato, Y., and Murata, H., (2001), “Microscopic particle crushing of sand subjected to high pressure one-dimensional compression.”Soil and Foundation, Vol. 41, pp. 69-82

    19. National Instrument Ltd., (2001), “PID Control Toolset User Manual. ”

    20. Parker Motion and Control Ltd., (1995), “Dynaserv DM & DR Direct Drive Servos User Guide.”

    21. Pestana, J. M., and Whittle, A. J., (1995), “Compression model for cohesionless soils. ”Geotechnique, Vol. 45(4), pp. 611-631

    22. Zhang, J., Wong, T. F., Yanagidani, T., and Davis, D. M., (1990), “Pressure-induced microcracking and gain crushing in Berea and boise sandstions-acoustic emission and quantitative microscopy measurements. ” Mechanics of Materials, Vol. 9, pp.1-15

    下載圖示 校內:2016-08-28公開
    校外:2016-08-28公開
    QR CODE