| 研究生: |
林欣洋 Lin, Shin-Yang |
|---|---|
| 論文名稱: |
模糊正規概念分析法於藥物交互作用中知識之探索 Knowledge Exploration in Drug Interaction using Fuzzy Formal Concept Analysis |
| 指導教授: |
李昇暾
Li, Sheng-Tun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 資訊管理研究所 Institute of Information Management |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 49 |
| 中文關鍵詞: | 模糊理論 、資訊擷取 、自然語言處理 、藥物交互作用 、正規概念分析 |
| 外文關鍵詞: | Fuzzy Theory, Natural Language Processing, Formal Concept Analysis, Drug Interaction, Information Retrieval |
| 相關次數: | 點閱:137 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著藥物研發技術的日益精良,藥品的多樣與新穎有逐漸提升的趨勢,在免除人類疾病痛苦上有其實質的助益。然在藥物愈來愈多的情況下,藥物之間的關係也將更為複雜,多種藥物合併使用所產生的交互作用,其帶來的危險性將是顯然易見的。基於病患的用藥安全,事前的藥物交互作用發現是極為迫切且重要的。
有鑑於此,本研究利用模糊正規概念分析(Fuzzy Formal Concept Analysis)於資料分析程序中,協助藥學領域的學者或從業人員明瞭藥品之間的概念與關聯大小,並使有興趣在探索藥物隱性知識的研究員,透過藥物知識架構引導,使其推論藥物交互作用時更有判斷依據,藉以提升用藥安全水平。
The improvements in pharmaceutics, accompanied by medicinal and technological advances, have expanded the diversity of pharmaceuticals to a great extent, turning the world of pharmacology into a complex web of drugs, their interactions, and most important of all, their effects on patients. The increasing number of existent pharmaceuticals inevitably complicates the interactions between them, revealing the importance of their thorough understanding in order to prevent possible pathogenic symptoms. This is emphasized by the seriousness of drug misuse and the related consequences.
This paper utilizes Fuzzy Formal Concept Analysis in the process of medicinal data analysis to uncover the ongoing connections between the formal concepts and the strengths of these relationships. The tacit knowledge extracted helps experts have a better insight of the pharmaceuticals and the possible drug interactions, consequently improving their usage in terms of effectiveness and reducing mistreatment.
丁一賢、陳牧言,資料探勘。滄海書局:台中 (2005)。
鍾芝敏,藥理學秘笈。合記書局:台北 (2002)。
吳啟誠等,加護病房內藥物交互作用之考量。中華民國重症醫學雜誌,第二卷,頁300-311 (2000)。
Agrawal, R., Imielinsky, T., and Swami, A., Mining association rules between sets of items in large databases. Proceedings of the 1993 International Conference on Management of Data(SIGMOD 93), pp. 207-216. (1993)
Beeri, C., Formica, A., and Missikoff, M., Inheritance hierarchy design in object-oriented databases. Data and Knowledge Engineering, Vol. 30, No. 3, pp. 191-216. (1999)
Borgida, A., Mylopoulos, J., and Wong, H. K. T., Generalization/Specialization as a Basis for Software Specification. in: On Conceptual Modelling: Perspectives from Artificial Intelligence, Databases, and Programming Languages, Springer: New York, pp.87-117. (1984)
Boucher-Ryan, P. du and Bridge, D., Collaborative Recommending using Formal Concept Analysis. Knowledge-Based Systems, Vol.19, No. 5, pp.309-315. (2006)
Carpineto, C. and Romano, G., Exploiting the Potential of Concept Lattices for Information Retrieval with CREDO. Journal of Universal Computing, Vol. 10, No. 8, pp.985-1013. (2004)
Diaz-Agudo, B. and Gonzalez-Calero, P.A., Formal Concept Analysis as a Support Technique for CBR. Knowledge-Based System, Vol. 14, No. 3, pp.163-171. (2001)
Dumais, S.T., Latent Semantic Analysis. Annual Review of Information Science and Technology, Vol. 38, No. 1, pp.188-230. (2004)
Duquenne, V. and Guigues, J.L., Familles minimales d’implications informatives resultant d’un tableau de donnees binaires. Mathematiques et Sciences Humaines, pp. 5-18. (1986)
Elloumi, S., Jaam, J., Hasnah, A., Jaoua, A., and Nafkha, I., A multi-level conceptual data reduction approach based on the Lukasiewicz implication. Information Sciences, Vol.163, No. 4, pp.253-262. (2004)
Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., and Uthurasamy, R., Advances in Knowledge Discovery and Data Mining, AAAI/MIT Press: California. (1996)
Formica, A., Ontology-based concept similarity in Formal Concept Analysis. Information Sciences, Vol. 176, No. 18, pp.2624-2641. (2006)
Ganter, B. and Wille, R., Implikationen und Abhangigkeiten zwischen Merkmalen. in: P. O. Degens, H.-J. Hermes, and O. Opitz(Eds.), Die Klassifikation und ihr Umfeld. Indeks: Frankfurt, pp.171-185. (1986)
Infogistics, POS-tag stands. Available at: http://www.infogistics.com/tagset.html
Jiang, G., Ogasawara, K., Endoh, A., and Sakurai, T., Context-based ontology building support in clinical domains using formal concept analysis. International Journal of Medical Informatics, Vol. 71, No. 1, pp.71-81. (2003)
Rock, T., Wille, R., Ein TOSCANA-Erkundungssystem zur Literatursuche. in: Stumme, G. und Wille, R.(Hrsg.), Begriffliche Wissensverarbeitung. Methoden und Anwendungen. Springer: Berlin-Heidelberg, pp.239-253. (2000)
Salton, G. and Buckley, C., Term-weighting approaches in automatic text retrieval. Information Processing and Management, Vol. 24, No. 5, pp.513–523. (1988)
Tho, Q.T., Hui, S.C., and Cao, T.H., A Fuzzy FCA Approach for Citation-based Document Retrieval. IEEE Conference on Cybernetics and Intelligent Systems (CIS), Singapore, pp.578-583. (2004)
Tho, Q.T., Hui, S.C., Fong, A.C.M., and Cao, T.H., Automatic Fuzzy Ontology Generation for Semantic Web. IEEE Transactions on Data and Knowledge Engineering, Vol. 18, No. 6, pp.842-856. (2006)
Uta, P., Formal concept analysis in information science. Annual review of information science and technology, Vol. 40, pp.521-543. (2006)
Weng, S.S., Tsai, H.J., Liu, S.C., and Hsu, C.H., Ontology construction for information classification. Expert Systems with Applications, Vol. 31, No. 1, pp. 1-12. (2006)
Wille, R., Restructuring lattice theory: an approach based on hierarchies of concepts. in: Ivan Rival(Ed.), Ordered sets. Reidel: Dordrecht-Boston, pp.445-470. (1982)
Yevtushenko, S. A., System of data analysis "Concept Explorer". (In Russian). Proceedings of the 7th national conference on Artificial Intelligence KII-2000, pp. 127-134. (2000)
Zadeh, L. A., Fuzzy sets. Information and Control, Vol. 8, pp.338-353. (1965)