簡易檢索 / 詳目顯示

研究生: 陳鈞貿
Chen, Chun-Mao
論文名稱: 設計及製造整合奈米電極之微流體晶片於電化學檢測之應用
Design and Fabrication of Microfluidic Biochips Integrated with Nanoelectrode Ensemble Electrodes for Electrochemically Detecting Biosamples Applications
指導教授: 葉明龍
Yeh, Ming-Lung
林哲信
Lin, Che-Hsin
學位類別: 博士
Doctor
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 90
中文關鍵詞: 鈀奈米組合電極玻尿酸導電介面電極金奈米組合電極巰嘌呤毛細管電泳電化學偵測
外文關鍵詞: palladium nanoelectrode ensemble (Pd-NEE), gold nanoelectrode ensemble (GNEE), hyaluronic acid (HA), mercaptopurine, decoupler, capillary electrophoresis electrochemical detect
相關次數: 點閱:128下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出一以壓克力作為基材之毛細管電泳晶片,其係整合金奈米組合電極(gold nanoelectrode ensemble, GNEE)之工作電極與導電介面電極(decoupler)作為電化學檢測之應用。本研究提出一新穎的製程來製作此晶片,首先利用熱壓的方式,將製作好的金奈米電極薄膜,直接熱壓在經由微影製程製作出的平面金屬電極上,並利用一低溫化學接合的方法,封裝此具有微管道之晶片。實驗結果顯示,在檢測多巴胺(dopamine)時,與利用平面金電極所量得之訊號相較下,以金奈米組合電極作為工作電極可以大幅提高所得訊號大小。此外,在導電介面電極的效能比較上,與一平面鈀電極相比,利用金奈米組合電極作為導電介面電極之晶片,可以大幅減少在高分離電場下造成之雜訊電流與基線飄移影響。在檢測分離多巴胺及兒茶酚(catechol)等兩種神經傳導物質的應用方面,利用金奈米組合電極作為工作電極及導電介面電極之晶片,可以有效的提高訊噪比及分離效率。
    因為利用金奈米組合電極作為工作電極及導電介面電極,不但可以有效的提高偵測訊號也可以大幅的降低雜訊,本研究利用上述所提出之晶片,來作為檢測抗癌藥物巰嘌呤(mercaptopurine)之用,本研究對於巰嘌呤之偵測極限為100 nM,並且在偵測濃度範圍從10 mM到100 nM之巰嘌呤時,所得之訊號與樣本濃度有良好的線性關係(R2=0.989)。由以上結果得知,本研究所提出之利用金奈米組合電極作為工作電極及導電介面電極之毛細管電泳電化學晶片,對於生物樣本的檢測於晶片實驗室及微全程分析系統的應用上,提供了一個良好的解決之道。
    本實驗同時發展出一套整合鈀奈米電極的微流體電化學偵測系統,此系統可以用來純化樣本中的玻尿酸,達到快速且敏感的偵測血清中玻尿酸的目的。首先,對於鈀奈米組合電極的製程,本研究利用無電鍍的方式,將鈀金屬沉積於一具有奈米孔洞之聚碳酸酯(polycarbonate, PC)薄膜。本研究並利用掃描式電子顯微鏡(scanning electron microscopy, SEM)及能量散射光譜儀(energy dispersive X-ray spectroscopy, EDS)來確認鈀奈米組合電極之表面特性及組成。鈀對於氫是一種具有高催化性的材料,此外,與大系統相比,奈米材料對於氫有更好的吸收力及更低的吸收能階。本研究亦驗證鈀奈米電極對於氫有極良好的吸收儲存能力。因為鈀奈米電極吸收了溶液中大部分的氫,因此大幅增加了溶液中氫氧離子的活性,因為氫氧離子會攻擊玻尿酸中糖環上的碳氫鍵,進而產生自由基,而玻尿酸產生自由基的反應可以用電化學的方式檢測。因此增加氫氧離子的活性,便可以有效提升所量得之玻尿酸訊號。此外,本研究利用微波的方式去除血清中蛋白質對於工作電極之干擾,之後再利用靜電力的方式,來分離及純化老鼠血清中之玻尿酸。實驗結果顯示,鈀奈米電極可以有效提高訊噪比,對於玻尿酸的偵測極限為10 µg/L,並且對於偵測血清樣本中的玻尿酸濃度從0.1 g/L到10 µg/L的範圍中,有良好的線性關係,(R2=0.954)。由以上結果可知,本研究所發展的系統,可以用來快速且靈敏的分析血清中的玻尿酸。

    This study presents a capillary electrophoresis PMMA-based microchip for electrochemical detection applications featuring embedded gold nanoelectrode ensemble (GNEE) working and decoupler electrodes. In fabricating the microchip, the GNEE films are pressed directly onto the metallic electrode structures using a hot embossing technique, and the microfluidic channels are then sealed using a low-temperature azeotropic solvent bonding method. The experimental results show that the GNEE working electrode provides a significantly higher signal response than that obtained from a bulk gold electrode when applied to the detection of dopamine analyte. Compared to a conventional bulk palladium decoupler electrode, the GNEE decoupler electrode reduces both the amplitude of baseline drift at higher separation voltages. When detecting a mixture of 1 mM dopamine and 1 mM catechol, the signal-to-noise ratio of the microchip with a GNEE decoupler electrode is significantly higher than that of a microchip with a conventional bulk palladium planar decoupler electrode, and hence the detection resolution is greatly enhanced.
    Mercaptopurine can restrain enzymes in tumor cells for deoxyribonucleic acid and ribonucleic acid syntheses. When detecting mercaptopurine sample, the used of GNEE electrodes in the capillary electrophoresis electrochemical detection (CE-ED) chip not only enhances the signal but also decreases the background noises, resulting a high detection limit of 100 nM for mercaptopurine, and showing good linear responses in the 100 nM –10 mM (R2=0.989). Overall, the results indicate that the proposed CE-ED microchip with embedded GNEE working and decoupler electrodes not only provides a fast detection method for mercaptopurine analysis but also provides an ideal solution for sample detection in Lab-on-Chip and micro total analysis applications.
    This study also proposes an innovative microfluidic device for hyaluronic acid (HA) extraction and electrochemical detection utilizing a PMMA-based microchip that integrates with a palladium nanoelectrode ensemble (Pd-NEE). This work proposes a novel fabrication process to fabricate Pd-NEE using electroless deposition of Pd in a thin porous polycarbonate (PC) film for high performance electrochemical detection. Scanning electron microscopy (SEM) in conjunction with energy dispersive X-ray spectroscopy (EDS) are used to characterize the morphology and composition of Pd-NEE. This work also demonstrates the excellent hydrogen adsorption ability of Pd-NEE, which indirectly increase the activity of OH and resulting in the detection of a complex mixture of radicals obtained from hydrogen abstraction at nearly all the C–H bonds on the sugar ring of HA. Electrochemical measurements can detect the HA with radicals so enhancing OH activity in the aqueous solutions can also enhance the measured signals of HA. The current study first uses microwaves to decrease protein interference on the working electrode, and then uses electrostatic force to separate and extract HA in the rat serum sample. Using Pd-NEE electrodes in the microchip not only enhances the signal but also decreases background noises, resulting in a high detection limit of 10 µg/L for HA, and showing good linear responses in the concentration range of 0.1 g/L–10 µg/L (R2=0.954). The proposed microchip device provides a fast detection method for hyaluronic acid analysis.

    中文摘要 I Abstract III Acknowledgement V List of tables VIII List of figures IX Nomenclature XII Abbreviation XIV Chapter 1. Research backgrounds 1 1.1. Capillary electrophoresis electrochemical detection methods 1 1.2. Nanoelectrode ensemble 2 1.3. GNEE as bio-sensing electrodes 3 1.4. Mercaptopurine 4 1.5. Hydrogen in palladium 5 1.6. Hyaluronic acid 5 1.7. Motivation and objectives 7 1.8. Thesis organization 9 Chapter 2. Theory 13 2.1. Microfabricated CE-ED devices 13 2.1.1. Conductivity applications 13 2.1.2. Potentiometric applications 15 2.1.3. Amperometric applications 16 2.1.4. Decoupler for electrochemical detections 19 2.2. Ensembles of nanoelectrodes 20 2.2.1. Development background of NEE 20 2.2.2. NEE as working electrode 20 2.2.3. NEE as decoupler electrode for CE-ED 22 2.2.4. Electrochemical double layer and double layer capacitance 22 2.2.5. Faradic current and double layer charging current 25 2.3. Palladium hydrogen system 28 2.3.1. Physical and chemical adsorption 28 2.3.2. The phase transition 29 2.3.3. Electrochemical absorption and desorption 31 2.3.4. Hydrogen evolution reaction on nanometer sized materials 32 Chapter 3. Materials and methods 33 3.1. Fabrication of GNEE template 33 3.2. Fabrication of Pd-NEE template 36 3.3. Methods to fabricate PMMA microfluidic chip 38 3.3.1. Microchip design 38 3.3.2. Microchip fabrication process 41 3.4. Reagents and instrumentation 45 3.4.1. Reagents 45 3.4.2. Instrumentation 45 3.5. Experimental procedure 46 3.5.1. High performance CE-ED and mercaptopurine determination 46 3.5.2. Hyaluronic acid determination 47 Chapter 4. Results and discussion 49 4.1. Performance evaluation of CE-ED microchip integrated with GNEE working and decoupler electrodes 49 4.1.1. Cyclic voltammetry analysis 49 4.1.2. Decoupling efficiency – charging current 51 4.1.3. Decoupling efficiency – baseline drift 54 4.1.4. Reliability and sensitivity 55 4.1.5. Evaluation of separating ability 55 4.2. Mercaptopurine determination 60 4.2.1. Cyclic voltammetry analysis 60 4.2.2. Effect of the electric field strength 62 4.2.3. Linearity test 63 4.2.4. Separation efficiency test 64 4.3. Hyaluronic acid determination 66 4.3.1. Morphology and composition of Pd-NEE 66 4.3.2. The effect of electrode materials 67 4.3.3. Hydrogen evolution reaction on Pd-NEE 68 4.3.4. The effect of protein adsorption 69 4.3.5. The effect of electrostatic force 70 4.3.6. Linearity test 72 Chapter 5. Conclusions 74 Chapter 6. Future works 76 References 77 Biography 88 Publication list 88

    [1] D. J. Harrison, A. Manz, Z. H. Fan, H. Ludi, and H. M. Widmer, "Capillary electrophoresis and sample injection systems integrated on a planar glass chip," Analytical Chemistry, vol. 64, pp. 1926-1932, 1992.
    [2] D. J. Harrison, K. Fluri, K. Seiler, Z. H. Fan, C. S. Effenhauser, and A. Manz, "Micromachining a miniaturized capillary electrophoresis-based chemical-analysis system on a chip," Science, vol. 261, pp. 895-897, 1993.
    [3] S. C. Jacobson, R. Hergenroder, L. B. Koutny, and J. M. Ramsey, "High-speed separations on a microchip," Analytical Chemistry, vol. 66, pp. 1114-1118, 1994.
    [4] V. Dolnik, S. R. Liu, and S. Jovanovich, "Capillary electrophoresis on microchip," Electrophoresis, vol. 21, pp. 41-54, 2000.
    [5] J. Wang, "Portable electrochemical systems," Trac-Trends in Analytical Chemistry, vol. 21, pp. 226-232, 2002.
    [6] J. Wang, A. Ibanez, M. P. Chatrathi, and A. Escarpa, "Electrochemical enzyme immunoassays on microchip platforms," Analytical Chemistry, vol. 73, pp. 5323-5327, 2001.
    [7] J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. K. Wu, O. J. A. Schueller, and G. M. Whitesides, "Fabrication of microfluidic systems in poly(dimethylsiloxane)," Electrophoresis, vol. 21, pp. 27-40, 2000.
    [8] N. Bao, J. J. Xu, Y. H. Dou, Y. Cai, H. Y. Chen, and X. H. Xia, "Electrochemical detector for microchip electrophoresis of poly(dimethylsiloxane) with a three-dimensional adjustor," Journal of Chromatography A, vol. 1041, pp. 245-248, 2004.
    [9] C. S. Effenhauser, G. J. M. Bruin, A. Paulus, and M. Ehrat, "Integrated capillary electrophoresis on flexible silicone microdevices: Analysis of DNA restriction fragments and detection of single DNA molecules on microchips," Analytical Chemistry, vol. 69, pp. 3451-3457, 1997.
    [10] B. Grass, A. Neyer, M. Johnck, D. Siepe, F. Eisenbeiss, G. Weber, and R. Hergenroder, "A new PMMA-microchip device for isotachophoresis with integrated conductivity detector," Sensors and Actuators B-Chemical, vol. 72, pp. 249-258, 2001.
    [11] G. B. Lee, S. H. Chen, G. R. Huang, W. C. Sung, and Y. H. Lin, "Microfabricated plastic chips by hot embossing methods and their applications for DNA separation and detection," Sensors and Actuators B-Chemical, vol. 75, pp. 142-148, 2001.
    [12] M. Kato, Y. Gyoten, K. Sakai-Kato, and T. Toyo'oka, "Rapid analysis of amino acids in Japanese green tea by microchip electrophoresis using plastic microchip and fluorescence detection," Journal of Chromatography A, vol. 1013, pp. 183-189, 2003.
    [13] P. Ugo, L. M. Moretto, S. Bellomi, V. P. Menon, and C. R. Martin, "Ion-exchange voltammetry at polymer film-coated nanoelectrode ensembles," Analytical Chemistry, vol. 68, pp. 4160-4165, 1996.
    [14] J. L. Conyers and H. S. White, "Electrochemical characterization of electrodes with submicrometer dimensions," Analytical Chemistry, vol. 72, pp. 4441-4446, 2000.
    [15] E. Jeoung, T. H. Galow, J. Schotter, M. Bal, A. Ursache, M. T. Tuominen, C. M. Stafford, T. P. Russell, and V. M. Rotello, "Fabrication and characterization of nanoelectrode arrays formed via block copolymer self-assembly," Langmuir, vol. 17, pp. 6396-6398, 2001.
    [16] W. L. Cheng, S. J. Dong, and E. K. Wang, "Colloid chemical approach to nanoelectrode ensembles with highly controllable active area fraction," Analytical Chemistry, vol. 74, pp. 3599-3604, 2002.
    [17] L. M. Moretto, N. Pepe, and P. Ugo, "Voltammetry of redox analytes at trace concentrations with nanoelectrode ensembles," Talanta, vol. 62, pp. 1055-1060, 2004.
    [18] W. S. Baker and R. M. Crooks, "Independent geometrical and electrochemical characterization of arrays of nanometer-scale electrodes," Journal of Physical Chemistry B, vol. 102, pp. 10041-10046, 1998.
    [19] C. R. Martin, "Nanomaterials: s membrane-based synthetic approach," Science, vol. 266, pp. 1961-1966, 1994.
    [20] C. R. Martin, "Membrane-based synthesis of nanomaterials," Chemistry of Materials, vol. 8, pp. 1739-1746, 1996.
    [21] L. Sun and R. M. Crooks, "Fabrication and characterization of single pores for modeling mass transport across porous membranes," Langmuir, vol. 15, pp. 738-741, 1999.
    [22] V. P. Menon and C. R. Martin, "Fabrication and evaluation of nanoelectrode ensembles," Analytical Chemistry, vol. 67, pp. 1920-1928, 1995.
    [23] J. C. Hulteen, V. P. Menon, and C. R. Martin, "Template preparation of nanoelectrode ensembles - Achieving the 'pure-radial' electrochemical-response limiting case," Journal of the Chemical Society-Faraday Transactions, vol. 92, pp. 4029-4032, 1996.
    [24] S. Szunerits and D. R. Walt, "Fabrication of an optoelectrochemical microring array," Analytical Chemistry, vol. 74, pp. 1718-1723, 2002.
    [25] B. Brunetti, P. Ugo, L. M. Moretto, and C. R. Martin, "Electrochemistry of phenothiazine and methylviologen biosensor electron-transfer mediators at nanoelectrode ensembles," Journal of Electroanalytical Chemistry, vol. 491, pp. 166-174, 2000.
    [26] L. Angnes, E. M. Richter, M. A. Augelli, and G. H. Kume, "Gold electrodes from recordable CDs," Analytical Chemistry, vol. 72, pp. 5503-5506, 2000.
    [27] F. C. Pereira, L. M. Moretto, M. De Leo, M. V. B. Zanoni, and P. Ugo, "Gold nanoelectrode ensembles for direct trace electroanalysis of iodide," Analytica Chimica Acta, vol. 575, pp. 16-24, 2006.
    [28] M. Delvaux, A. Walcarius, and S. Demoustier-Champagne, "Electrocatalytic H2O2 amperometric detection using gold nanotube electrode ensembles," Analytica Chimica Acta, vol. 525, pp. 221-230, 2004.
    [29] M. Delvaux, S. Demoustier-Champagne, and A. Walcarius, "Flow injection amperometric detection at enzyme-modified gold nanoelectrodes," Electroanalysis, vol. 16, pp. 190-198, 2004.
    [30] T. H. Hsia, K. T. Liao, and H. J. Huang, "Flow analysis of p-aminophenyl phosphate with a gold nanoelectrode ensemble based detector," Analytica Chimica Acta, vol. 537, pp. 315-319, 2005.
    [31] R. B. Gearry, M. L. Barclay, M. J. Burt, J. A. Collett, and B. A. Chapman, "Thiopurine drug adverse effects in a population of New Zealand patients with inflammatory bowel disease," Pharmacoepidemiology and Drug Safety, vol. 13, pp. 563-567, 2004.
    [32] M. Chrzanowska, P. Kolecki, B. Duczmal-Cichocka, and J. Fiet, "Metabolites of mercaptopurine in red blood cells: a relationship between 6-thioguanine nucleotides and 6-methylmercaptopurine metabolite concentrations in children with lymphoblastic leukemia," European Journal of Pharmaceutical Sciences, vol. 8, pp. 329-334, 1999.
    [33] T. Graham, "On the absorption and dialytic separation of gases by colloid septa," Philosophical Transactions of the Royal Society of London, vol. 156, pp. 399-439, 1866.
    [34] V. Breger and E. Gileadi, "Adsorption and absorption of hydrogen in palladium," Electrochimica Acta, vol. 16, pp. 177-190, 1971.
    [35] H. Conrad, G. Ertl, and E. E. Latta, "Adsorption of hydrogen on palladium single-crystal surfaces," Surface Science, vol. 41, pp. 435-446, 1974.
    [36] W. Dong and J. Hafner, "H-2 dissociative adsorption on Pd(111)," Physical Review B, vol. 56, pp. 15396-15403, 1997.
    [37] J. P. Muscat, "Hydrogen adsorption on the surface of palladium (111)," Helvetica Physica Acta, vol. 58, pp. 793-793, 1985.
    [38] A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, and M. J. Heben, "Storage of hydrogen in single-walled carbon nanotubes," Nature, vol. 386, pp. 377-379, 1997.
    [39] C. Nutzenadel, A. Zuttel, D. Chartouni, and L. Schlapbach, "Electrochemical storage of hydrogen in nanotube materials," Electrochemical and Solid State Letters, vol. 2, pp. 30-32, 1999.
    [40] A. M. Hermann, P. A. Ramakrishnan, V. Badri, P. Mardilovich, and W. Landuyt, "Metal hydride batteries research using nanostructured additives," International Journal of Hydrogen Energy, vol. 26, pp. 1295-1299, 2001.
    [41] M. Wu, P. K. Shen, Z. D. Wei, S. Q. Song, and M. Nie, "High activity PtPd-WC/C electrocatalyst for hydrogen evolution reaction," Journal of Power Sources, vol. 166, pp. 310-316, 2007.
    [42] P. H. Weigel, S. J. Frost, R. D. Leboeuf, and C. T. Mcgary, "The specific interaction between fibrin (ogen) and hyaluronan - possible consequences in hemostasis, inflammation and wound-healing," Ciba Foundation Symposia, vol. 143, pp. 248-264, 1989.
    [43] M. Sharif, E. George, L. Shepstone, W. Knudson, E. J. M. A. Thonar, J. Cushnaghan, and P. Dieppe, "Serum hyaluronic-scid level as a predictor of disease progression in osteoarthritis of the knee," Arthritis and Rheumatism, vol. 38, pp. 760-767, 1995.
    [44] L. A. Kopke-Aguiar, J. R. M. Martins, C. C. Passerotti, C. F. Toledo, H. B. Nader, and D. R. Borges, "Serum hyaluronic acid as a comprehensive marker to assess severity of liver disease in schistosomiasis," Acta Tropica, vol. 84, pp. 117-126, 2002.
    [45] G. D. Burchard, F. Guisse-Sow, M. Diop, A. Ly, R. Lanuit, B. Gryseels, and A. M. Gressner, "Schistosoma mansoni infection in a recently exposed community in Senegal: lack of correlation between liver morphology in ultrasound and connective tissue metabolites in serum," Tropical Medicine & International Health, vol. 3, pp. 234-241, 1998.
    [46] H. Akiyama, H. Toyoda, S. Yamanashi, Y. Sagehashi, T. Toida, and T. Imanari, "Microdetermination of hyaluronic-acid in human urine by high-performance liquid-chromatography," Biomedical Chromatography, vol. 5, pp. 189-192, 1991.
    [47] M. Ambrosius, K. Kleesiek, and C. Goetting, "Quantitative determination of the glycosaminoglycan delta-disaccharide composition of serum, platelets and granulocytes by reversed-phase high-performance liquid chromatography," Journal of Chromatography A, vol. 1201, pp. 54-60, 2008.
    [48] N. Volpi, "Electrophoresis separation of glycosaminoglycans on nitrocellulose membranes," Analytical Biochemistry, vol. 240, pp. 114-118, 1996.
    [49] M. Kinoshita, H. Shiraishi, C. Muranushi, N. Mitsumori, T. Ando, Y. Oda, and K. Kakehi, "Determination of molecular mass of acidic polysaccharides by capillary electrophoresis," Biomedical Chromatography, vol. 16, pp. 141-145, 2002.
    [50] J. Wang, "Electrochemical detection for microscale analytical systems: a review," Talanta, vol. 56, pp. 223-231, 2002.
    [51] M. H. Shi, Y. Y. Peng, J. Zhou, B. H. Liu, Y. P. Huang, and J. L. Kong, "Immunoassays based on microelectrodes arrayed on a silicon chip for high throughput screening of liver fibrosis markers in human serum," Biosensors & Bioelectronics, vol. 21, pp. 2210-2216, 2006.
    [52] S. Al-Assaf, C. L. Hawkins, B. J. Parsons, M. J. Davies, and G. O. Phillips, "Identification of radicals from hyaluronan (hyaluronic acid) and crosslinked derivatives using electron paramagnetic resonance spectroscopy," Carbohydrate Polymers, vol. 38, pp. 17-22, 1999.
    [53] B. C. Gilbert, D. M. King, and C. B. Thomas, "Radical reactions of carbohydrates .5. The oxidation of some polysaccharides by the hydroxyl radical - an electron-spin-resonance investigation," Carbohydrate Research, vol. 125, pp. 217-235, 1984.
    [54] Z. Lurie, T. Offer, A. Russo, A. Samuni, and D. Nitzan, "Do stable nitroxide radicals catalyze or inhibit the degradation of hyaluronic acid?," Free Radical Biology and Medicine, vol. 35, pp. 169-178, 2003.
    [55] K. T. Liao, C. M. Chen, H. J. Huang, and C. H. Lin, "Poly(methyl methacrylate) microchip device integrated with gold nanoelectrode ensemble for in-column biochemical reaction and electrochemical detection," Journal of Chromatography A, vol. 1165, pp. 213-218, 2007.
    [56] F. R. F. Fan and A. J. Bard, "Electrochemical detection of single molecules," Science, vol. 267, pp. 871-874, 1995.
    [57] J. Tanyanyiwa, S. Leuthardt, and P. C. Hauser, "Conductimetric and potentiometric detection in conventional and microchip capillary electrophoresis," Electrophoresis, vol. 23, pp. 3659-3666, 2002.
    [58] J. Lichtenberg, N. F. de Rooij, and E. Verpoorte, "A microchip electrophoresis system with integrated in-plane electrodes for contactless conductivity detection," Electrophoresis, vol. 23, pp. 3769-3780, 2002.
    [59] Y. S. Ding, C. D. Garcia, and K. R. Rogers, "Poly(dimethylsiloxane) microchip electrophoresis with contactless conductivity detection for measurement of chemical warfare agent degradation products," Analytical Letters, vol. 41, pp. 335-350, 2008.
    [60] P. Kuban and P. C. Hauser, "Evaluation of microchip capillary electrophoresis with external contactless conductivity detection for the determination of major inorganic ions and lithium in serum and urine samples," Lab on a Chip, vol. 8, pp. 1829-1836, 2008.
    [61] O. A. Li, Y. L. Tong, Z. G. Chen, C. Liu, S. Zhao, and J. Y. Mo, "A glass/PDMS hybrid microfluidic chip embedded with integrated electrodes for contactless conductivity detection," Chromatographia, vol. 68, pp. 1039-1044, 2008.
    [62] C. Liu, Y. Y. Mo, Z. G. Chen, X. Li, O. L. Li, and X. Zhou, "Dual fluorescence/contactless conductivity detection for microfluidic chip," Analytica Chimica Acta, vol. 621, pp. 171-177, 2008.
    [63] J. Wang, G. Chen, M. P. Chatrathi, M. Wang, R. Rinehart, and A. Muck, "Screen-printed contactless conductivity detector for microchip capillary electrophoresis," Electroanalysis, vol. 20, pp. 2416-2421, 2008.
    [64] C. Y. Lee, C. M. Chen, G. L. Chang, C. H. Lin, and L. M. Fu, "Fabrication and characterization of semicircular detection electrodes for contactless conductivity detector - CE microchips," Electrophoresis, vol. 27, pp. 5043-5050, 2006.
    [65] F. Laugere, G. W. Lubking, J. Bastemeijer, and M. J. Vellekoop, "Design of an electronic interface for capacitively coupled four-electrode conductivity detection in capillary electrophoresis microchip," Sensors and Actuators B-Chemical, vol. 83, pp. 104-108, 2002.
    [66] J. Wang, M. Pumera, G. Collins, F. Opekar, and I. Jelinek, "A chip-based capillary electrophoresis-contactless conductivity microsystem for fast measurements of low-explosive ionic components," Analyst, vol. 127, pp. 719-723, 2002.
    [67] M. Pumera, J. Wang, F. Opekar, I. Jelinek, J. Feldman, H. Lowe, and S. Hardt, "Contactless conductivity detector for microchip capillary electrophoresis," Analytical Chemistry, vol. 74, pp. 1968-1971, 2002.
    [68] E. M. Abad-Villar, J. Tanyanyiwa, M. T. Fernandez-Abedul, A. Costa-Garcia, and P. C. Hauser, "Detection of human immunoglobulin in microchip and conventional capillary electrophoresis with contactless conductivity measurements," Analytical Chemistry, vol. 76, pp. 1282-1288, 2004.
    [69] C. Haber, I. Silvestri, S. Roosli, and W. Simon, "Potentiometric detector for capillary zone electrophoresis," Chimia, vol. 45, pp. 117-121, 1991.
    [70] W. R. Vandaveer, S. A. Pasas-Farmer, D. J. Fischer, C. N. Frankenfeld, and S. M. Lunte, "Recent developments in electrochemical detection for microchip capillary electrophoresis," Electrophoresis, vol. 25, pp. 3528-3549, 2004.
    [71] W. Lu and R. M. Cassidy, "Background noise in capillary electrophoretic amperometric detection," Analytical Chemistry, vol. 66, pp. 200-204, 1994.
    [72] F.-M. Matysik, "Improved end-column amperometric detection for capillary electrophoresis," Journal of Chromatography A, vol. 742, pp. 229-234, 1996.
    [73] S. R. Wallenborg, L. Nyholm, and C. E. Lunte, "End-column amperometric detection in capillary electrophoresis: Influence of separation-related parameters on the observed half-wave potential for dopamine and catechol," Analytical Chemistry, vol. 71, pp. 544-549, 1999.
    [74] S. S. Zhang, Z. B. Yuan, H. X. Liu, H. Zou, and Y. J. Wu, "On-column amperometric detection in capillary electrophoresis with an improved high-voltage electric field decoupler," Journal of Chromatography A, vol. 872, pp. 259-268, 2000.
    [75] R. A. Wallingford and A. G. Ewing, "Capillary zone electrophoresis with electrochemical detection," Analytical Chemistry, vol. 59, pp. 1762-1766, 1987.
    [76] Y. F. Yik, H. K. Lee, S. F. Y. Li, and S. B. Khoo, "Micellar electrokinetic capillary chromatography of vitamin B6 with electrochemical detection," Journal of Chromatography A, vol. 585, pp. 139-144, 1991.
    [77] F.-M. Matysik, A. Meister, and G. Werner, "Electrochemical detection with microelectrodes in capillary flow systems," Analytica Chimica Acta, vol. 305, pp. 114-120, 1995.
    [78] J. Zhou and S. M. Lunte, "Membrane-based on-column mixer for capillary electrophoresis/electrochemistry," Analytical Chemistry, vol. 67, pp. 13-18, 1995.
    [79] D. C. Chen, F. L. Hsu, D. Z. Zhan, and C. H. Chen, "Palladium film decoupler for amperometric detection in electrophoresis chips," Analytical Chemistry, vol. 73, pp. 758-762, 2001.
    [80] A. A. Dawoud, T. Kawaguchi, and R. Jankowiak, "Integrated microfluidic device with an electroplated palladium decoupler for more sensitive amperometric detection of the 8-hydroxy-deoxyguanosine (8-OH-dG) DNA adduct," Analytical and Bioanalytical Chemistry, vol. 388, pp. 245-252, 2007.
    [81] M. L. Kovarik, M. W. Li, and R. S. Martin, "Integration of a carbon microelectrode with a microfabricated palladium decoupler for use in microchip capillary electrophoresis/electrochemistry," Electrophoresis, vol. 26, pp. 202-210, 2005.
    [82] W. T. Kok and Y. Sahin, "Solid-state field decoupler for off-column detection in capillary electrophoresis," Analytical Chemistry, vol. 65, pp. 2497-2501, 1993.
    [83] N. A. Lacher, S. M. Lunte, and R. S. Martin, "Development of a microfabricated palladium decoupler/electrochemical detector for microchip capillary electrophoresis using a hybrid glass/poly(dimethylsiloxane) device," Analytical Chemistry, vol. 76, pp. 2482-2491, 2004.
    [84] C. R. Martin, "Electroanalytical chemistry," Marcel Dekker, New York, 1999, pp. 1-74.
    [85] C. Amatore, J. M. Saveant, and D. Tessier, "Charge-transfer at partially blocked surfaces - a model for the case of microscopic active and inactive sites," Journal of Electroanalytical Chemistry, vol. 147, pp. 39-51, 1983.
    [86] E. Sabatani and I. Rubinstein, "Organized self-assembling monolayers on electrodes .2. Monolayer-based ultramicroelectrodes for the study of very rapid electrode-kinetics," Journal of Physical Chemistry, vol. 91, pp. 6663-6669, 1987.
    [87] I. F. Cheng, L. D. Whiteley, and C. R. Martin, "Ultramicroelectrode ensembles - comparison of experimental and theoretical responses and evaluation of electroanalytical detection limits," Analytical Chemistry, vol. 61, pp. 762-766, 1989.
    [88] S. Park, S. M. Lunte, and C. E. Lunte, "A perfluorosulfonated ionomer joint for capillary electrophoresis with on-column electrochemical detection," Analytical Chemistry, vol. 67, pp. 911-918, 1995.
    [89] A. J. Bard and L. R. Faulkner, "Electrochemical methods," Wiley, New York, 2001, pp. 11-14.
    [90] C. M. A. Brett and A. M. O. Brett, "Electrochemistry principles, methods, and applications," Oxford, New York, 1993, pp. 40-44.
    [91] C. H. Hamann, A. Hammnett, and W. Vielstich, "Electrochemistry," Wiley, New York, 1998, pp. 110-112.
    [92] P. Ugo, L. M. Moretto, and F. Vezza, "Ionomer-coated electrodes and nanoelectrode ensembles as electrochemical environmental sensors: Recent advances and prospects," Chemphyschem, vol. 3, pp. 917-925, 2002.
    [93] L. Schlapbach, "Hydrogen in intermetallic compounds .1. Introduction," Topics in Applied Physics, vol. 63, pp. 1-10, 1988.
    [94] K. Christmann, "The interaction of hydrogen with metal-surfaces of 2-fold symmetry," Molecular Physics, vol. 66, pp. 1-50, 1989.
    [95] M. A. Pick, A. Hanson, K. W. Jones, and A. N. Goland, "Depth-concentration profile of hydrogen in niobium," Physical Review B, vol. 26, pp. 2900-2906, 1982.
    [96] M. Strongin, J. Colbert, G. J. Dienes, and D. O. Welch, "Surface-bulk uptake of hydrogen by niobium," Physical Review B, vol. 26, pp. 2715-2719, 1982.
    [97] Y. Sakamoto and N. Ishimaru, "Hydrogen Concentration profiles in metal hydride electrodes during the discharge process," Zeitschrift Fur Physikalische Chemie-International Journal of Research in Physical Chemistry & Chemical Physics, vol. 183, pp. 311-317, 1994.
    [98] T. H. Yang, S. Pyun, and Y. Yoon, "Hydrogen transport through Pd electrode: Current transient analysis," Electrochimica Acta, vol. 42, pp. 1701-1708, 1997.
    [99] F. A. Lewis, "The palladium hydrogen system," Academic Press, London, 1967, p. 110.
    [100] H. Buchold, G. Sicking, and E. Wicke, "Structural and electronic influence on interstitial site diffusion of hydrogen in palladium alloys," Berichte Der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics, vol. 79, pp. 1152-1152, 1975.
    [101] T. B. Flanagan, G. E. Biehl, and B. S. Bowerman, "The solution of hydrogen within hysteresis loops of metal-H systems," Journal of Metals, vol. 32, pp. 84-84, 1980.
    [102] P. N. Bartlett, B. Gollas, S. Guerin, and J. Marwan, "The preparation and characterisation of H-1-e palladium films with a regular hexagonal nanostructure formed by electrochemical deposition from lyotropic liquid crystalline phases," Physical Chemistry Chemical Physics, vol. 4, pp. 3835-3842, 2002.
    [103] R. Kirchheim, "Solubility and diffusivity of hydrogen in complex materials," Physica Scripta, vol. T94, pp. 58-67, 2001.
    [104] Y. S. Cheng and K. L. Yeung, "Effects of electroless plating chemistry on the synthesis of palladium membranes," Journal of Membrane Science, vol. 182, pp. 195-203, 2001.
    [105] J. P. Collins and J. D. Way, "Preparation and characterization of a composite palladium-ceramic membrane," Industrial & Engineering Chemistry Research, vol. 32, pp. 3006-3013, 1993.
    [106] J. Shu, B. P. A. Grandjean, E. Ghali, and S. Kaliaguine, "Autocatalytic effects in electroless deposition of palladium," Journal of the Electrochemical Society, vol. 140, pp. 3175-3180, 1993.
    [107] K. L. Yeung, S. C. Christiansen, and A. Varma, "Palladium composite membranes by electroless plating technique - Relationships between plating kinetics, film microstructure and membrane performance," Journal of Membrane Science, vol. 159, pp. 107-122, 1999.
    [108] X. L. Zhang, G. X. Xiong, and W. S. Yang, "A modified electroless plating technique for thin dense palladium composite membranes with enhanced stability," Journal of Membrane Science, vol. 314, pp. 226-237, 2008.
    [109] C. H. Lin, G. B. Lee, Y. H. Lin, and G. L. Chang, "A fast prototyping process for fabrication of microfluidic systems on soda-lime glass," Journal of Micromechanics and Microengineering, vol. 11, pp. 726-732, 2001.
    [110] C. H. Lin, C. H. Chao, and C. W. Lan, "Low azeotropic solvent for bonding of PMMA microfluidic devices," Sensors and Actuators B-Chemical, vol. 121, pp. 698-705, 2007.
    [111] B. J. Venton and R. M. Wightman, "Psychoanalytical electrochemistry: Dopamine and behavior," Analytical Chemistry, vol. 75, pp. 414a-421a, 2003.
    [112] P. Zoltowski and E. Makowska, "Diffusion coefficient of hydrogen in alpha-phase palladium and palladium-platinum alloy," Physical Chemistry Chemical Physics, vol. 3, pp. 2935-2942, 2001.
    [113] T. H. Yang and S. I. Pyun, "Hydrogen absorption and diffusion into and in palladium: ac-impedance analysis under impermeable boundary conditions," Electrochimica Acta, vol. 41, pp. 843-848, 1996.
    [114] L. Fotouhi, M. Khakpour, D. Nematollahi, and M. M. Heravi, "Investigation of the electrochemical behavior of some catechols in the presence of 4,6-dimethylpyrimidine-2-thiol," Arkivoc, pp. 43-52, 2008.
    [115] R. Madueno, D. Garcia-Raya, A. J. Viudez, J. M. Sevilla, T. Pineda, and M. Blazquez, "Influence of the solution pH in the 6-mercaptopurine self-assembled monolayer (6MP-SAM) on a Au(111) single-crystal electrode," Langmuir, vol. 23, pp. 11027-11033, 2007.
    [116] B. Nigovic, N. Kujundzic, and K. Sankovic, "Electron transfer in N-hydroxyurea complexes with iron(III)," European Journal of Medicinal Chemistry, vol. 40, pp. 51-55, 2005.
    [117] T. Mutschele and R. Kirchheim, "Hydrogen as a probe for the average thickness of a grain-boundary," Scripta Metallurgica, vol. 21, pp. 1101-1104, 1987.
    [118] A. Pundt, C. Sachs, M. Winter, M. T. Reetz, D. Fritsch, and R. Kirchheim, "Hydrogen sorption in elastically soft stabilized Pd-clusters," Journal of Alloys and Compounds, vol. 295, pp. 480-483, 1999.
    [119] P. Bernabeu and A. Caprani, "Influence of surface-charge on adsorption of fibrinogen and or albumin on a rotating-disk electrode of platinum and carbon," Biomaterials, vol. 11, pp. 258-264, 1990.
    [120] H. Stadler, M. Mondon, and C. Ziegler, "Protein adsorption on surfaces: dynamic contact-angle (DCA) and quartz-crystal microbalance (QCM) measurements," Analytical and Bioanalytical Chemistry, vol. 375, pp. 53-61, 2003.

    下載圖示 校內:2010-10-19公開
    校外:2010-10-19公開
    QR CODE