| 研究生: |
李崇瑋 Li, Chung-Wei |
|---|---|
| 論文名稱: |
選擇性浸出釹鐵硼磁鐵切削廢料中有價金屬之研究 Selective Leaching of Valuable Metals from Neodymium Magnet Swarf |
| 指導教授: |
申永輝
Shen, Yun-Hwei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 釹鐵硼切削廢料 、選擇性浸漬 、硝酸 、氫氟酸 、田口式品質設計方法 |
| 外文關鍵詞: | Neodymium Magnet Swarf, selective leaching, nitric acid, hydrofluoric acid, Taguchi quality design method |
| 相關次數: | 點閱:134 下載:15 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來隨著消費性電子產品的需求大幅提升、新能源汽車產業的崛起與風力發電的成長,釹鐵硼磁鐵的需求日漸增長,但供應鏈的過度集中卻為整個市場帶來許多不穩定因素。因此釹鐵硼磁鐵的再資源化不論在促進環境保護、發展循環經濟或是平衡國內原物料價格方面,都是個兼具經濟與戰略價值的課題之一。
因此本研究主旨在於以濕法冶金技術建構出一套同時兼顧經濟效益與物質循環的釹鐵硼廢切削料回收流程。利用田口方法在兼顧實驗成本與精確性下,獲得可信的實驗數據,得出最佳的參數配置。
本研究將切削廢料烘乾後,於850°C馬弗爐進行氧化焙燒5小時,獲得轉換成氧化態的釹、鐵與鈮;並隨後與5N硝酸以240g/L的固液比混合後於90°C水浴下持續攪拌180分鐘,選擇性浸出90.42wt%釹的同時僅有4.91wt%的鐵一同溶出。獲得的釹浸漬液加入過量氫氟酸能夠快速沉澱出氟化釹,並在將氟化釹/氟化鐵沉澱物與釹浸餘料的洗滌液混合後,回收洗滌液中殘餘的釹離子,同時將氟化鐵雜質置換回液相,達到回收、純化的目的,並成功減少了清洗氟化釹而產生的廢水。釹最終的回收率為94.81wt%,二次純化後的氟化釹純度則達到99.74wt%。
在鈮的富集方面,利用釹沉澱尾液中氫氟酸(2N)與硝酸(5N)建構成的體系對鈮與鐵進行選擇性浸漬,將所有的釹沉澱尾液與清洗後的釹浸餘料混合後,於50°C水浴中連續攪拌180分鐘,有約總量86.69wt%的鈮被浸出,同時鐵約有9.10wt%的溶出量。鈮的清水洗滌液則洗出總量8.28wt%的鈮與1.22wt%的鐵,故鈮的總體回收率為94.97wt%。
本研究最後對鈮與鐵的分離進行一系列的實驗,得出鈮在氫氟酸-硫酸體系下,與磷酸三丁酯(TBP)有最經濟的萃取與分離效果。因此藉由蒸餾回收鈮浸漬液中的硝酸與氫氟酸,並重新以氫氟酸溶解所有的鈮與部分的鐵,在更換溶液體系的同時再次對鈮富集。最後於鈮的在浸漬液中(6.9N HF)加入5N硫酸,與TBP以等體積比例混合震盪20分鐘並靜置5分鐘後,分離有機相與水相,成功將超過99%的鈮萃取至有機相,且幾乎檢測不到鐵的萃取發生。
本研究最終選擇性浸出並分離了94.81wt%的釹、94.94wt%的鈮,並獲得鐵純度為97.71wt%的最終浸餘料固相。上述各種最終產物皆可做為產品重新進入物質循環中,達到兼顧經濟效益與物質循環的研究目標。
In this thesis, the oxidizing roasted neodymium magnet swarf (ONMS) was leached at 90°C for 180 minutes with 5N nitric acid and a solid/liquid ratio (S/L ratio) of 320g/L (but subsequent experiments were performed at 240g/L); added hydrofluoric acid into Nd leachate could rapidly precipitate and recover NdF3; purifying with the Nd-containing washing liquid could obtain a 94.81wt% recovery rate of total Nd content, while only 5.19wt% iron dissolved out.
Niobium can be enriched by re-mixing the Nd-precipitation tail liquid with the washed Nd leaching residue. In 2N hydrofluoric acid, 5N nitric acid, and 50°C water bath environment, all leaching residues were immersed for 180 minutes; and then the niobium leaching residues were cleaned by another washing liquid. 94.97wt% of total Nb could finally be recovered.
The acid in the Nb leachate was recovered by distillation, and all the Nb and part of the Fe were re-dissolved with the HF, then turned into HF-H2SO4 system. Tributyl phosphate (TBP) was added in Nb re-dissolving solution at an O/A ratio of 1:1 for solvent extraction. After shaking for 20 minutes, and quiescence for 5 minutes, the organic phase and the aqueous phase were separated. More than 99% of Nb was successfully extracted, and the Fe content was almost undetectable.
The whole study successfully separated 94.81wt% neodymium and 94.97wt% niobium, and obtained a leach residue with a final iron purity of 97.71wt%. All the above-mentioned final products can be re-entered into the material cycle as products, so as to achieve the research goal of striking a balance between economic benefits and material cycle.
1. Abdul Quader, M., et al., Present needs, recent progress and future trends of energy-efficient Ultra-Low Carbon Dioxide (CO) Steelmaking (ULCOS) program. Renewable and Sustainable Energy Reviews, 2016. 55: p. 537-549.
2. Allibert, C.H., Effect of Nb and Zr on the phases present in Nd-Fe-B alloys for permanent magnets. Journal of the Less Common Metals, 1989. 152(1): p. L1-L4.
3. American-Iron-and-Steel-Institute, FACTS ABOUT AMERICAN STEEL SUSTAINABILITY, in SteelSustainability. 2021.03.
4. Bakry, M., J. Li, and X. Zeng, Evaluation of global niobium flow modeling and its market forecasting. Frontiers in Energy, 2022.
5. Branca, T.A., et al., Reuse and Recycling of By-Products in the Steel Sector: Recent Achievements Paving the Way to Circular Economy and Industrial Symbiosis in Europe. Metals, 2020. 10(3).
6. Britannica, T. and E.o. Encyclopaedia. niobium. Encyclopedia Britannica. 2019,November 24; Available from: https://www.britannica.com/science/niobium.
7. Britannica, T. and E.o. Encyclopaedia. iron. Encyclopedia Britannica. 2022, September 6; Available from: https://www.britannica.com/science/iron-chemical-element.
8. Britannica, T. and E.o. Encyclopaedia. neodymium. Encyclopedia Britannica. 2022,June 10; Available from: https://www.britannica.com/science/neodymium.
9. Britannica, T. and E.o. Encyclopaedia. boron. Encyclopedia Britannica. 2022,September 14; Available from: https://www.britannica.com/science/boron-chemical-element.
10. Brown, D., B.-M. Ma, and Z. Chen, Developments in the processing and properties of NdFeb-type. Journal of Magnetism and Magnetic Materials, 2002.8. 248(3): p. 432-440.
11. Cheramin, M., et al., Resilient NdFeB magnet recycling under the impacts of COVID-19 pandemic: Stochastic programming and Benders decomposition. Transportation Research Part E: Logistics and Transportation Review, 2021. 155.
12. Du, X. and T.E. Graedel, Global in-use stocks of the rare Earth elements: a first estimate. Environ Sci Technol, 2011. 45(9): p. 4096-101.
13. Du, X. and T.E. Graedel, Global Rare Earth In-Use Stocks in NdFeB Permanent Magnets. Journal of Industrial Ecology, 2011. 15(6): p. 836-843.
14. Eggert, R., et al., Rare Earths: Market Disruption, Innovation, and Global Supply Chains. Annual Review of Environment and Resources, 2016. 41(1): p. 199-222.
15. Golev, A., et al., Rare earths supply chains: Current status, constraints and opportunities. Resources Policy, 2014. 41: p. 52-59.
16. Habashi, F., A short history of hydrometallurgy. Hydrometallurgy, 2005. 79(1-2): p. 15-22.
17. Habib, K., S.T. Hansdóttir, and H. Habib, Critical metals for electromobility: Global demand scenarios for passenger vehicles, 2015–2050. Resources, Conservation and Recycling, 2020. 154.
18. Harris, I.R. and G.W. Jewell, Rare-earth magnets: properties, processing and applications, in Functional Materials for Sustainable Energy Applications, J.A. Kilner, et al., Editors. 2012, Woodhead Publishing. p. 600-639.
19. Haynes, W.M., CRC Handbook of Chemistry and Physics, 91st Edition. 2010: Taylor & Francis Group.
20. Henckens, M.L.C.M., P.P.J. Driessen, and E. Worrell, Towards a sustainable use of primary boron. Approach to a sustainable use of primary resources. Resources, Conservation and Recycling, 2015. 103: p. 9-18.
21. Jin, H., et al., A bi-objective network design for value recovery of neodymium-iron-boron magnets: A case study of the United States. Journal of Cleaner Production, 2019. 211: p. 257-269.
22. Kumari, A., et al., Recovery of rare earths from spent NdFeB magnets of wind turbine: Leaching and kinetic aspects. Waste Manag, 2018. 75: p. 486-498.
23. Laatikainen, M., et al., Selective acid leaching of rare earth elements from roasted NdFeB magnets. Separation and Purification Technology, 2021. 278.
24. Liu, F., et al., Recovery and separation of rare earths and boron from spent Nd-Fe-B magnets. Minerals Engineering, 2020. 145.
25. Luo, J., Development of anisotropic Nd-Fe-B powders from sintered magnets by Hydrogen Decrepitation/Desorption process
Développement de poudres anisotropes Nd-Fe-B à partir d'aimants frittés par procédé de décrépitation à l'hydrogène et désorption. 2009, Université Joseph-Fourier - Grenoble I.
26. Mirji, K.V., Sheela, and N. Saibaba, Technological Challenges in Extractive Metallurgy and Refining of Nb, Ta and Preparation of their Compounds & Alloys. Materials Today: Proceedings, 2016. 3(9): p. 3151-3161.
27. Mottram, R.S., A. Kianvash, and I.R Harris, The use of metal hydrides in powder blending for the production of NdFeB-type magnets. Journal of Alloys and Compounds, 1999. 283(1-2).
28. Nayab Rasool, S., et al., Development of neodymium (III) ions doped sodium fluoro-borate glass composite materials and study of the laser emission. Optik, 2022. 255.
29. Nete, M., W. Purcell, and J.T. Nel, Separation and isolation of tantalum and niobium from tantalite using solvent extraction and ion exchange. Hydrometallurgy, 2014. 149: p. 31-40.
30. Nishimura, S., J. Moriyama, and I. Kushima, Extraction and Separation of Tantalum and Niobium by Liquid-Liquid Extraction in the Hydrofluoric Acid-Tributyl Phosphate System. Transactions of the Japan Institute of Metals, 1963. 4(4): p. 259-262.
31. Nishimura, S., J. Moriyama, and I. Kushima, Extraction and Separation of Tantalum and Niobium by Liquid-Liquid Extraction in the HF-H2SO4-TBP System. Transactions of the Japan Institute of Metals, 1964. 5(1): p. 39-42.
32. Padhan, E., A.K. Nayak, and K. Sarangi, Recovery of neodymium and dysprosium from NdFeB magnet swarf. Hydrometallurgy, 2017. 174: p. 210-215.
33. Panayotova, M. and V. Panayotov, Review of methods for the rare earth metals recycling. Annual of the University of Mining and Geology, 2012.01. 55: p. 142-147.
34. Parker, S.F.H., P.J. Grundy, and J. Fidler, Electron microscope study of precipitation in a niobium-containing (Nd, Dy)-Fe-B sintered magnet. Journal of Magnetism and Magnetic Materials, 1987. 66(1): p. 74-78.
35. Rabatho, J.P., et al., Recovery of Nd and Dy from rare earth magnetic waste sludge by hydrometallurgical process. Journal of Material Cycles and Waste Management, 2013. 15(2): p. 171-178.
36. Sagawa, M., et al., New material for permanent magnets on a base of Nd and Fe (invited). Journal of Applied Physics, 1984. 55(6): p. 2083-2087.
37. Sagawa, M., et al., Nd–Fe–B Permanent Magnet Materials. Japanese Journal of Applied Physics, 1987.6. 26: p. 785-800.
38. Schulz, K. and J. Papp, Niobium and tantalum: indispensable twins. 2014.
39. Sharma, A., et al., Impact of neodymium oxide on optical properties and X-ray shielding competence of Nd2O3–TeO2–ZnO glasses. Radiation Physics and Chemistry, 2022. 195.
40. Shikika, A., et al., A review on extractive metallurgy of tantalum and niobium. Hydrometallurgy, 2020. 198.
41. sigmaaldrich. Product Specification-F2Fe. Available from: https://www.sigmaaldrich.com/specification-sheets/372/092/399841-BULK_______ALDRICH__.pdf.
42. sigmaaldrich. Product Specification-F3Fe. Available from: https://www.sigmaaldrich.com/specification-sheets/245/971/288659-BULK_______ALDRICH__.pdf.
43. sigmaaldrich. Product Specification-F3Fe · 3H2O. Available from: https://www.sigmaaldrich.com/specification-sheets/391/284/334499-BULK_______ALDRICH__.pdf.
44. Tokunaga, M., H. Harada, and S. Trout, Effect of Nb additions on the irreversible losses of Nd-Fe-B type magnets. IEEE Transactions on Magnetics, 1987.12. 23(5): p. 2284-2286.
45. Tunsu, C., Hydrometallurgy in the recycling of spent NdFeB permanent magnets, in Waste Electrical and Electronic Equipment Recycling, Francesco Vegliò and Ionela Birloaga, Editors. 2018, Woodhead Publishing: Electronic and Optical Materials. p. 175-211.
46. U.S.GeologicalSurvey, Mineral commodity summaries 2022, in Mineral Commodity Summaries. 2022: Reston, VA.
47. UNEP, I., Recycling rates of metals: A status report. 2011.
48. Vander Hoogerstraete, T., et al., From NdFeB magnets towards the rare-earth oxides: a recycling process consuming only oxalic acid. RSC Adv., 2014. 4(109): p. 64099-64111.
49. Warren, J.K., Geology and production of saline borate salts. Salty Matters, 2020 Feb. 29.
50. Yu, L.Q., Y.H. Wen, and M. Yan, Effects of Dy and Nb on the magnetic properties and corrosion resistance of sintered NdFeB. Journal of Magnetism and Magnetic Materials, 2004. 283(2-3): p. 353-356.
51. Zepf, V., Neodymium Use and Recycling Potential, in Rare Earths Industry. 2016. p. 305-318.
52. Zhang, Y., et al., Hydrometallurgical Recovery of Rare Earth Elements from NdFeB Permanent Magnet Scrap: A Review. Metals, 2020. 10(6).
53. 宋江波, 高性能钕铁硼行业和公司解析——有色金属行业投资策略报告, in 有色金屬, 万联证券, Editor. 2017. p. 3-11.
54. 李輝煌, 田口方法 : 品質設計的原理與實務. 2011: 高立圖書有限公司出版.
55. 金征敏, 高性能永磁体Nd-Fe-B和Sm-Fe-N的发展. 金属功能材料, 2003. 03: p. 40-43.
56. 財政部關務署. 海關進出口統計. Available from: https://portal.sw.nat.gov.tw/APGA/GA30.
57. 郝志平, 氟化物法回收钕铁硼稀土永磁废料. STATE NO. 8272 FACTORY (CN) CN1077993A, 1993.11.
58. 張文成, 高性能稀土永久磁石之研究與發展. 物理雙月刊, 2000.12. 22(6): p. 570-583.
59. 深圳市万轩磁业有限公司. 材料性能. (n.d.)Retrieved Oct 8, 2022; Available from: http://www.fgmagnet.com/.
60. 蔡宗顯, 110 年我國出進口貿易概況. 民111.2: 財政部統計處.