簡易檢索 / 詳目顯示

研究生: 王皓恬
Wang, Hao-Tien
論文名稱: 利用受缺氧調控之Met啟動子趨動溶瘤病毒治療肝癌
Oncolytic adenovirus driven by hypoxia- inducible Met promoter for the treatment of hepatocellular carcinoma
指導教授: 吳昭良
Wu, Chao-Liang
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 50
中文關鍵詞: 啓動子基因治療肝癌
外文關鍵詞: adenovirus, HCC, Met
相關次數: 點閱:135下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在台灣,肝癌是目前最常發生的惡性腫瘤之一,其早期症狀不明顯且不易察覺,因此提供有效的治療是非常的重要。已有許多研究指出,具有複製能力的腺病毒能有效地毒殺腫瘤細胞,因此被視為嶄新的癌症治療法。腫瘤在生長的階段需要新生的血管提供氧氣及養分,並伴隨著腫瘤的惡化。因此,可藉由針對腫瘤局部缺氧的特性,增加對癌症的治療效果。目前有許多研究即利用 hypoxia response element (HRE)調控基因的表現,逹到對腫瘤細胞的專一毒殺作用。Met為肝細胞生長因子(hepatocytes growth factor, HGF)的受器,在許多人類癌症細胞中皆發現其過量表現,並扮演著促進腫瘤細胞生長及轉移的重要角色。在此研究中,我們利用腫瘤中Met過量表現,以及缺氧等特性,分別建構二隻由Met啟動子與受缺氧調控Met啟動子所趨動的腺病毒,分別命名為Ad/WHaT及Ad/mickey,並了解此病毒在小鼠與人類的肝細胞中所造成的毒殺作用。我們發現在小鼠ML-1及人類Hep3B肝癌細胞中,確實具有相當高的Met表現量,但在小鼠LL/2及人類PC14PE6肺癌細胞中,Met的表現量則低許多。基於Met啟動子的不同表現,二隻病毒皆能有效地對ML-1及Hep3B肝癌細胞造成較佳的毒殺作用。我們也利用CoCl2模擬缺氧的環境,並證明缺氧調控Met啟動子的確會受到缺氧的調控,而表現上升。同時,Ad/mickey在缺氧環境下的毒殺效果會較Ad/WHaT佳,但在有氧的情況下,二隻病毒所表現的差異則不大。我們也發現rapamycin,一種免疫抑制劑,能增加Met及Ad/WHaT的表現。在肝癌的動物實驗中,Ad/WHaT及Ad/mickey皆能有效地抑制腫瘤生長,並延長小鼠的壽命。Ad/WHaT結合rapamycin後,更能有效地提升其抗癌效果。由結果顯示,利用Met啟動子趨動一腺病毒能有效和安全地治療肝癌。

     Hepatocellular carcinoma (HCC) is one of the most human malignant tumors in Taiwan. As this disease has a poor prognosis, an effective therapeutic modality is urgently needed. Replication-selective adenovirus has been reported to kill tumor cells and therefore can be one of the promising therapeutic approaches for cancer. Since hypoxia is a common characteristic of human tumors, which adversely affects the prognosis of cancer patients, targeting hypoxic regions may increase the effectiveness of cancer treatment. It is the reason why many researches have exploited hypoxia response element (HRE) to control gene expression for tumor-targeted gene therapy. Met, the receptor for hepatocyte growth factor (HGF), is overexpressed in many human cancers, and may contribute to their progression and metastasis. In this study, we constructed oncolytic adenovirus driven by hypoxia-inducible Met promoter (Ad/mickey), or by Met promoter (Ad/WHaT), and examined their cytolytic effects on mouse and human HCC cell lines. We found that ML-1 and Hep3B HCC cells expressed high levels of Met protein, whereas LL/2 and PC14PE6 lung cancer cells expressed low levels of Met protein. Moreover, the Met promoter activity was positively correlated with Met protein expression. Based on the difference in promoter activity, both viruses caused more severe cytolytic effects on ML-1 and Hep3B cells than on LL/2 and PC14PE6 cells. We also used CoCl2 to mimic hypoxic condition and found hypoxia-inducible Met promoter could be up-regulated under hypoxic condition compared with Met promoter. Meanwhile, Ad/mickey exhibited better oncolytic effects than Ad/WHaT, but its cytolytic effect was relatively attenuated under normoxia. We also found that rapamycin, an immunosuppressive drug, could enhance Met promoter activity and Ad/WHaT protein expression. The in vivo antitumor effects of Ad/mickey and Ad/WHaT were evaluated in terms of tumor growth and survival in BALB/c mice bearing syngeneic ML-1 tumors. Combination of Ad/WHaT and chemotherapy exhibited higher antitumor efficacy compared with either treatment alone. These results suggest that oncolytic adenovirus driven by the Met promoter had therapeutic potential for the treatment of HCC overexpressing Met.

    Contents Chinese abstract…………………………………………………………Ⅰ Abstract……………………………………………………………………Ⅲ Acknowledgement…………………………………………………………Ⅴ Contents……………………………………………………………………Ⅵ Figure contents…………………………………………………………ⅨAbbreviation………………………………………………………………XI Introduction 1. Hepatocellular carcinoma………………………………………… 1 2. Adenovirus…………………………………………………………… 1 2-1. Structure of adenovirus…………………………………………1 2-2. Adenoviral vector for therapy…………………………………2 2-3. Oncolytic adenovirus…………………………………………… 3 3. Improvement of adenoviral vector targeting………………… 4 3-1. Met……………………………………………………………………4 3-2. Hypoxia-response element (HRE) ………………………………5 4. Treatment strategies……………………………………………… 6 Materials and methods A. Materials A.1. Plasmids…………………………………………………………… 7 A.2. Cell lines………………………………………………………… 7 A.3. Experiential animals…………………………………………… 8 B. Methods B-1. Preparation of recombinant adenoviruses……………………8 B-2. Plaque development assay……………………………………… 8 B.3. Transcription activity of promoter………………………… 9 B-4. Western blotting………………………………………………… 9 B-5. Determination of infectability of cell lines by adenovirus…10 B-6. Flow cytometry…………………………………………………… 10 B-7. Cytotoxicity assay……………………………………………… 10 B-7-1. Crystal violet………………………………………………… 10 B-7-2. MTT assay…………………………………………………………11 B-8. Animal studies…………………………………………………… 11 B-8-1. Antitumor effects of Ad/WHaT and Ad/mickey on HCC cells… 11 B-8-2. Effects of Ad/WHaT gene therapy combined with chemotherapy in the subcutaneous ML-1 tumor model…………………………………… 12 B-9. Statistical analysis…………………………………………… 12 Results A.Examination of Met expression in murine cancer cells………13 B.Determination of the infectivity of adenovirus in murine cancer cells…………………………………………………………………… 13 C.Examination of Met expression in human cancer cells……… 14 D.Determination of the infectivity of adenovirus in human cancer cells…………………………………………………………………… 14 D- 1. Ad/LacZ…………………………………………………………… 14 D- 2. Flow cytometry……………………………………………………15 E.Construction of Ad/WHaT…………………………………………… 15 F.Based on the difference of promoter activity and infection efficiency, Ad/WHaT caused more severe cytolytic effect on murine HCC cells…………16 G.Ad/WHaT exerted higher cytolytic effect on human HCC cells than lung cancer cells with dysfunctional p53………………………………………………16 H.Fusion of 6x-HRE conferred hypoxia-inducibility to Met promoter…………17 I.Construction of Ad/mickey……………………………………………………………17 J.Based on the difference of promoter activity and infection efficiency, Ad/mickey caused more severe cytolytic effect on murine HCC cells……18 K.Ad/mickey showed higher cytolytic effects on human HCC cells than lung cancer cells with dysfunctional p53……………………………………… 18 L.Ad/mickey exhibited higher oncolytic effects on murine HCC cells than Ad/WHaT under hypoxic condition……………………………………………………19 M.Ad/mickey exhibited higher oncolytic effects on human HCC cells than Ad/WHaT under hypoxic condition……………………………………………………19 N.In vivo antitumor effects of Ad/WHaT and Ad/mickey in mice bearing subcutaneous ML-1 tumors…………………………………………………………… 19 O.Rapamycin upregulated Met promoter activity……………………………………20 P.Ad/WHaT plus rapamycin exerted synergistic antitumor effects in mice bearing subcutaneous ML-1 tumors……………………………………………20 Discussion………………………………………………………………………………… 22 References………………………………………………………………………………… 26 Appendix 1………………………………………………………………………………… 48 Appendix 2………………………………………………………………………………… 49

    Aebersold, D.M., Burri, P., Beer, K.T., Laissue, J., Djonov, V., Greiner, R.H., and Semenza, G.L. (2001). Expression of hypoxia-inducible factor-1alpha: a novel predictive and prognostic parameter in the radiotherapy of oropharyngeal cancer. Cancer Res. 61, 2911-2916.
    Bergsland, E.K. (2001). Molecular mechanisms underlying the development of hepatocellular carcinoma. Semin. Oncol. 28, 521-531.
    Birchmeier, C., Birchmeier, W., Gherardi, E., and Vande Woude, G.F. (2003). Met, metastasis, motility and more. Nat. Rev. Mol. Cell Biol. 4, 915-925.
    Brahimi-Horn, C., Berra, E., and Pouyssegur, J. (2001). Hypoxia: the tumor's gateway to progression along the angiogenic pathway. Trends Cell Biol. 11, S32-S36.
    Cao, B., Su, Y., Oskarsson, M., Zhao, P., Kort, E.J., Fisher, R.J., Wang, L.M., and Vande Woude, G.F. (2001). Neutralizing monoclonal antibodies to hepatocyte growth factor/scatter factor (HGF/SF) display antitumor activity in animal models. Proc. Natl. Acad. Sci. U SA 98, 7443-7448.
    Chen, S.H., Hu, C.P., and Chang, C.M. (1992) Hepatitis B virus replication in well differentiated mouse hepatocyte cell lines immortalized by plasmid DNA. Cancer Res. 52,1329-1335.
    Chiocca, E.A., Abbed, K.M., Tatter, S., Louis, D.N., Hochberg, F.H., Barker, F., Kracher, J., Grossman, S.A., Fisher, J.D., Carson, K., Rosenblum, M., Mikkelsen, T., Olson, J., Markert, J., Rosenfeld, S., Nabors, L.B., Brem, S., Phuphanich, S., Freeman, S., Kaplan, R., and Zwiebel, J. (2004). A phase I open-label, dose-escalation, multi-institutional trial of injection with an E1B-Attenuated adenovirus, ONYX-015, into the peritumoral region of recurrent malignant gliomas, in the adjuvant setting. Mol. Ther. 10, 958-966.
    Christensen, J.G., Burrows, J., and Salgia, R. (2005). c-Met as a target for human cancer and characterization of inhibitors for therapeutic intervention. Cancer Lett. 225, 1-26.
    Furge, K.A., Kiewlich, D., Le, P., Vo, M.N., Faure, M., Howlett, A.R., Lipson, K.E., Woude, G.F., and Webb, C.P. (2001). Suppression of Ras-mediated tumorigenicity and metastasis through inhibition of the Met receptor tyrosine kinase. Proc. Natl. Acad. Sci. USA 98, 10722-10727.
    Galanis, E., Okuno, S.H., Nascimento, A.G., Lewis, B.D., Lee, R.A., Oliveira, A.M., Sloan, J.A., Atherton, P., Edmonson, J.H., Erlichman, C., Randlev, B., Wang, Q., Freeman, S., and Rubin, J. (2005). Phase I-II trial of ONYX-015 in combination with MAP chemotherapy in patients with advanced sarcomas. Gene Ther. 12, 437-445.
    Ganly, I., Mautner, V., and Balmain, A. (2000). Productive replication of human adenoviruses in mouse epidermal cells. J. Virol. 74, 2895-2899.
    Gera, J.F., Mellinghoff, I.K., Shi, Y., Rettig, M.B., Tran, C., Hsu, J.H., Sawyers, C.L., and Lichtenstein, A.K. (2004). AKT activity determines sensitivity to mammalian target of rapamycin (mTOR) inhibitors by regulating cyclin D1 and c-myc expression. J. Biol. Chem. 279, 2737-2746.
    Gooding, L.R., Ranheim, T.S., Tollefson, A.E., Aquino, L., Duerksen-Hughes, P., Horton, T.M., and Wold, W.S. (1991). The 10,400- and 14,500-dalton proteins encoded by region E3 of adenovirus function together to protect many but not all mouse cell lines against lysis by tumor necrosis factor. J. Virol. 65, 4114-4123.
    Gu, J., Kagawa, S., Takakura, M., Kyo, S., Inoue, M., Roth, J.A., and Fang, B. (2000). Tumor-specific transgene expression from the human telomerase reverse transcriptase promoter enables targeting of the therapeutic effects of the Bax gene to cancers. Cancer Res. 60, 5359-5364.
    Habib, N.A., Sarraf, C.E., Mitry, R.R., Havlik, R., Nicholls, J., Kelly, M., Vernon, C.C., Gueret-Wardle, D., El Masry, R., Salama, H., Ahmed, R., Michail, N., Edward, E., and Jensen, S.L. (2001). E1B-deleted adenovirus (dl1520) gene therapy for patients with primary and secondary liver tumors. Hum. Gene Ther. 12, 219-226.
    Hashimoto, Y., Kohri, K., Akita, H., Mitani, K., Ikeda, K., and Nakanishi, M. (1997). Efficient transfer of genes into senescent cells by adenovirus vectors via highly expressed alpha v beta 5 integrin. Biochem. Biophys. Res. Commun. 240, 88-92.
    He, T.C., Zhou, S., da Costa, L.T., Yu, J., Kinzler, K.W., and Vogelstein, B. (1998) A simplified system for generating recombinant adenoviruses.
    Proc. Natl. Acad. Sci. USA 95, 2509-2514.
    Hecht, J.R., Bedford, R., Abbruzzese, J.L., Lahoti, S., Reid, T.R., Soetikno, R.M., Kirn, D.H., and Freeman, S.M. (2003). A phase I/II trial of intratumoral endoscopic ultrasound injection of ONYX-015 with intravenous gemcitabine in unresectable pancreatic carcinoma. Clin. Cancer Res. 9, 555-561.
    Heise, C., Ganly, I., Kim, Y.T., Sampson-Johannes, A., Brown, R., and Kirn, D. (2000). Efficacy of a replication-selective adenovirus against ovarian carcinomatosis is dependent on tumor burden, viral replication and p53 status. Gene Ther. 7, 1925-1929.
    Herynk, M.H., Stoeltzing, O., Reinmuth, N., Parikh, N.U., Abounader, R., Laterra, J., Radinsky, R., Ellis, L.M., and Gallick, G.E. (2003). Down-regulation of c-Met inhibits growth in the liver of human colorectal carcinoma cells. Cancer Res. 63, 2990-2996.
    Huang, D., Desbois, A., and Hou, S.T. (2005). A novel adenoviral vector which mediates hypoxia-inducible gene expression selectively in neurons. Gene Ther. Apr 21 [Epub ahead of print]
    Jakubczak, J.L., Ryan, P., Gorziglia, M., Clarke, L., Hawkins, L.K., Hay, C., Huang, Y., Kaloss, M., Marinov, A., Phipps, S., Pinkstaff, A., Shirley, P., Skripchenko, Y., Stewart, D., Forry-Schaudies, S., and Hallenbeck, P.L. (2003). An oncolytic adenovirus selective for retinoblastoma tumor suppressor protein pathway-defective tumors: dependence on E1A, the E2F-1 promoter, and viral replication for selectivity and efficacy. Cancer Res. 63, 1490-1499.
    Khuri, F.R., Nemunaitis, J., Ganly, I., Arseneau, J., Tannock, I.F., Romel, L., Gore, M., Ironside, J., MacDougall, R.H., Heise, C., Randlev, B., Gillenwater, A.M., Bruso, P., Kaye, S.B., Hong, W.K., and Kirn, D.H. (2000). a controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat. Med. 6, 879-885.
    Ljubimova, J.Y., Petrovic, L.M., Wilson, S.E., Geller, S.A., and Demetriou, A.A. (1997). Expression of HGF, its receptor c-met, c-myc, and albumin in cirrhotic and neoplastic human liver tissue. J. Histochem. Cytochem. 45, 79-87.
    Makower, D., Rozenblit, A., Kaufman, H., Edelman, M., Lane, M.E., Zwiebel, J., Haynes, H., and Wadler, S. (2003). Phase II clinical trial of intralesional administration of the oncolytic adenovirus ONYX-015 in patients with hepatobiliary tumors with correlative p53 studies. Clin. Cancer Res. 9, 693-702.
    McGlynn, K.A., Tsao, L., Hsing, A.W., Devesa, S.S., and Fraumeni, J.F., Jr. (2001). International trends and patterns of primary liver cancer. Int. J. Cancer 94, 290-296.
    Michieli, P., Mazzone, M., Basilico, C., Cavassa, S., Sottile, A., Naldini, L., and Comoglio, P.M. (2004). Targeting the tumor and its microenvironment by a dual-function decoy Met receptor. Cancer Cell 6, 61-73.
    Moran, E. (1993). Interaction of adenoviral proteins with pRB and p53. FASEB J. 7, 880-885.
    Nemunaitis, J., Khuri, F., Ganly, I., Arseneau, J., Posner, M., Vokes, E., Kuhn, J., McCarty, T., Landers, S., Blackburn, A., Romel, L., Randlev, B., Kaye, S., and Kirn, D. (2001). Phase II trial of intratumoral administration of ONYX-015, a replication-selective adenovirus, in patients with refractory head and neck cancer. J. Clin. Oncol. 19, 289-298.
    Peter, I., Graf, C., Dummer, R., Schaffner, W., Greber, U.F., and Hemmi, S. (2003). A novel attenuated replication-competent adenovirus for melanoma therapy. Gene Ther. 10, 530-539.
    Rodriguez, R., Schuur, E.R., Lim, H.Y., Henderson, G.A., Simons, J.W., and Henderson, D.R. (1997). Prostate attenuated replication competent adenovirus (ARCA) CN706: a selective cytotoxic for prostate-specific antigen-positive prostate cancer cells. Cancer Res. 57, 2559-2563.
    Sattler, M., Pride, Y.B., Ma, P., Gramlich, J.L., Chu, S.C., Quinnan, L.A., Shirazian, S., Liang, C., Podar, K., Christensen, J.G., and Salgia, R. (2003). A novel small molecule met inhibitor induces apoptosis in cells transformed by the oncogenic TPR-MET tyrosine kinase. Cancer Res. 63, 5462-5469.
    Semenza, G.L. (2002). HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol. Med. 8, S62-S67.
    Semenza, G.L. (2000). Hypoxia, clonal selection, and the role of HIF-1 in tumor progression. Crit. Rev. Biochem. Mol. Biol. 35, 71-103.
    Shi, Y., Sharma, A., Wu, H., Lichtenstein, A., and Gera, J. (2005). Cyclin D1 and c-myc internal ribosome entry site (IRES)-dependent translation is regulated by AKT activity and enhanced by rapamycin through a p38. J. Biol. Chem. 280, 10964-10973.
    Tavian, D., De Petro, G., Benetti, A., Portolani, N., Giulini, S.M., and Barlati, S. (2000). u-PA and c-MET mRNA expression is co-ordinately enhanced while hepatocyte growth factor mRNA is down-regulated in human hepatocellular carcinoma. Int. J. Cancer 87, 644-649.
    Trusolino, L. and Comoglio, P.M. (2002). Scatter-factor and semaphorin receptors: cell signalling for invasive growth. Nat. Rev. Cancer 2, 289-300.
    Ueki, T., Fujimoto, J., Suzuki, T., Yamamoto, H., and Okamoto, E. (1997). Expression of hepatocyte growth factor and its receptor, the c-met proto-oncogene, in hepatocellular carcinoma. Hepatology 25, 619-623.
    Watanabe, T., Kuszynski, C., Ino, K., Heimann, D.G., Shepard, H.M., Yasui, Y., Maneval, D.C., and Talmadge, J.E. (1996). Gene transfer into human bone marrow hematopoietic cells mediated by adenovirus vectors. Blood 87, 5032-5039.
    Yano, S., Nokihara, H., Hanibuchi, M., Parajuli, P., Shinohara, T., Kawano, T., and Sone, S. (1997) Model of malignant pleural effusion of human lung adenocarcinoma in SCID mice. Oncol. Res. 9, 573-579.

    下載圖示 校內:2008-08-30公開
    校外:2008-08-30公開
    QR CODE