| 研究生: |
洪靖茹 Hong, Jing-Ru |
|---|---|
| 論文名稱: |
微型燃燒驅動式熱光電系統之概念、設計與示範 Concept, Design, and Demonstration of the Combustion-Driven Micro-Thermophotovoltaic Power System |
| 指導教授: |
李約亨
Li, Yueh-Heng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 熱光電 、白金管 、幅射管 、熱驅動 、微尺度動力系統 |
| 外文關鍵詞: | thermophotovoltaic, platinum, emitter, micro-scale power system |
| 相關次數: | 點閱:116 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究致力於研發一體積小且具有高能量密度之燃燒驅動式熱光電動力系統,由於微小燃燒系統會面臨熱散失、壁面冷熄、滯留時間太短等問題,因此本研究首要任務為設計一個微燃燒尺度之燃燒器,此燃燒器主要以觸媒(白金管)和石英管所組成,觸媒能降低活化能並有效克服熱能冷熄與自由基冷熄等問題,並於白金管上貫穿數個微孔及搭配背向式階梯的穩焰機制,能使火焰有效地穩駐於微管道中,而石英管具有高透明性,能整合燃燒器內部所幅射出的火焰螢光及白金管受熱後所產生的幅射光,一同導入於熱光電板轉換成電能輸出。此外,本計畫的另一特色是在石英管內側管壁上披覆氧化鐵層,使其成為幅射器。氧化鐵披覆層的幅射器相較碳化矽管更易加熱至白炙狀態產生幅射光,藉此增加微動力系統的光電轉換效率。因此,本研究計畫針對小尺度的燃燒裝置進行基礎實驗與數值模擬,藉此了解熱光電微動力系統的設計原理與關鍵技術,進而設計與製作出高效率與高可靠度的小型燃燒驅動式熱光電力之原型系統。
This study centers on the development of a micro-scale combustion-driven thermophotovoltaic (TPV) power generation system. The Micro-TPV system is a direct energy conversion device. It does not have any moving parts, and it converts the thermal power to electrical power directly. In this study, the first task is to design a combustor as an emitter for TPV power system. The characteristics of the combustor is to use catalyst tube with specific configuration and fuel/air mixture deployments to overcome the shortcomings of combustion instability and radical termination in a small-scale confined channel. Backward-facing step and percolated platinum tube are employed in a small-scale combustor to enhance flame stabilization and extend stable flammability. The stable operating range of the proposed tubular combustor is determined. The quartz tube has a unique feature of high-transparency, and it helps harvest the radiant emissions from the flame and catalyst inside the tube and integrate the radiant emission. Alternatively, coating metal-oxidized layer inside the quartz tube can be used as an emitter, and its advantage is quickly heating up to incandescence compared with SiC tube. The GaSb PV cell is engaged in the TPV system due to its inherently low band gap of PV cells. The integration sphere is performed to measure the radiant emissions of the proposed reactor. Eventually, assembling the TPV reactor with PV cell arrays is demonstrated and the corresponding overall efficiency is determined.
[1] T. Bauer, "Applications of TPV Generators," Thermophotovoltaics: Basic Principles and Critical Aspects of System Design, pp. 147-196, Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.
[2] S. Murugan, and B. Horák, “A review of micro combined heat and power systems for residential applications,” Renewable and Sustainable Energy Reviews, vol. 64, pp. 144-162, 10//, 2016.
[3] D. Dunn-Rankin, E. M. Leal, and D. C. Walther, “Personal power systems,” Progress in Energy and Combustion Science, vol. 31, no. 5–6, pp. 422-465, //, 2005.
[4] D. C. Walther, and J. Ahn, “Advances and challenges in the development of power-generation systems at small scales,” Progress in Energy and Combustion Science, vol. 37, no. 5, pp. 583-610, 9//, 2011.
[5] K. Alanne, K. Saari, M. Kuosa et al., “Thermo-economic analysis of a micro-cogeneration system based on a rotary steam engine (RSE),” Applied Thermal Engineering, vol. 44, pp. 11-20, 11//, 2012.
[6] L. Janak, Z. Ancik, J. Vetiska et al., “Thermoelectric Generator Based on MEMS Module as an Electric Power Backup in Aerospace Applications,” Materials Today: Proceedings, vol. 2, no. 2, pp. 865-870, //, 2015.
[7] S. K. Chou, W. M. Yang, K. J. Chua et al., “Development of micro power generators – A review,” Applied Energy, vol. 88, no. 1, pp. 1-16, 1//, 2011.
[8] B. Bitnar, W. Durisch, and R. Holzner, “Thermophotovoltaics on the move to applications,” Applied Energy, vol. 105, pp. 430-438, 5//, 2013.
[9] J. F. Gieras, "Generators for portable power applications," Advancements in Electric Machines, pp. 157-169, Dordrecht: Springer Netherlands, 2008.
[10] W. M. Yang, K. J. Chua, J. F. Pan et al., “Development of micro-thermophotovoltaic power generator with heat recuperation,” Energy Conversion and Management, vol. 78, pp. 81-87, 2//, 2014.
[11] W. M. Yang, S. K. Chou, C. Shu et al., “Combustion in micro-cylindrical combustors with and without a backward facing step,” Applied Thermal Engineering, vol. 22, no. 16, pp. 1777-1787, 11//, 2002.
[12] J. Ahn, C. Eastwood, L. Sitzki et al., “Gas-phase and catalytic combustion in heat-recirculating burners,” Proceedings of the Combustion Institute, vol. 30, no. 2, pp. 2463-2472, 1//, 2005.
[13] M. A. Mujeebu, M. Z. Abdullah, M. Z. A. Bakar et al., “Applications of porous media combustion technology – A review,” Applied Energy, vol. 86, no. 9, pp. 1365-1375, 9//, 2009.
[14] D. Trimis, and F. Durst, “Combustion in a Porous Medium-Advances and Applications,” Combustion Science and Technology, vol. 121, no. 1-6, pp. 153-168, 1996/12/01, 1996.
[15] Y.-H. Li, G.-B. Chen, F.-H. Wu et al., “Effects of catalyst segmentation with cavities on combustion enhancement of blended fuels in a micro channel,” Combustion and Flame, vol. 159, no. 4, pp. 1644-1651, 4//, 2012.
[16] K. Maruta, K. Takeda, J. Ahn et al., “Proceedings of the Combustion InstituteExtinction limits of catalytic combustion in microchannels,” Proceedings of the Combustion Institute, vol. 29, no. 1, pp. 957-963, 2002/01/01, 2002.
[17] W. Yang, S. Chou, K. Chua et al., “An advanced micro modular combustor-radiator with heat recuperation for micro-TPV system application,” Applied Energy, vol. 97, pp. 749-753, 9//, 2012.
[18] J. H. Park, S. I. Lee, H. Wu et al., “Thermophotovoltaic power conversion from a heat-recirculating micro-emitter,” International Journal of Heat and Mass Transfer, vol. 55, no. 17–18, pp. 4878-4885, 8//, 2012.
[19] T. Bauer, "Radiators (Emitters)," Thermophotovoltaics: Basic Principles and Critical Aspects of System Design, pp. 17-34, Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.
[20] T. Amano, and M. Yamaguchi, “Analysis of energy balance of electricity and heat generated by TPV generators,” Solar Energy Materials and Solar Cells, vol. 66, no. 1–4, pp. 579-583, 2//, 2001.
[21] B. Bitnar, W. Durisch, J. C. Mayor et al., “Characterisation of rare earth selective emitters for thermophotovoltaic applications,” Solar Energy Materials and Solar Cells, vol. 73, no. 3, pp. 221-234, 7//, 2002.
[22] H. Daneshvar, R. Prinja, and N. P. Kherani, “Thermophotovoltaics: Fundamentals, challenges and prospects,” Applied Energy, vol. 159, pp. 560-575, 12/1/, 2015.
[23] C. A. Grimes, O. K. Varghese, and S. Ranjan, "Photovoltaic - Electrolysis Cells," Light, Water, Hydrogen: The Solar Generation of Hydrogen by Water Photoelectrolysis, C. A. Grimes, O. K. Varghese and S. Ranjan, eds., pp. 485-516, Boston, MA: Springer US, 2008.
[24] T. Bauer, "Photovoltaic Cells," Thermophotovoltaics: Basic Principles and Critical Aspects of System Design, pp. 53-81, Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.
[25] W. Durisch, B. Bitnar, J. C. Mayor et al., “Small self-powered grid-connected thermophotovoltaic prototype system,” Applied Energy, vol. 74, no. 1–2, pp. 149-157, 1//, 2003.
[26] W. M. Yang, S. K. Chou, C. Shu et al., “Experimental study of micro-thermophotovoltaic systems with different combustor configurations,” Energy Conversion and Management, vol. 48, no. 4, pp. 1238-1244, 4//, 2007.
[27] K. Qiu, and A. C. S. Hayden, “Direct thermal to electrical energy conversion using very low bandgap TPV cells in a gas-fired furnace system,” Energy Conversion and Management, vol. 79, pp. 54-58, 3//, 2014.
[28] L. C. Chia, and B. Feng, “The development of a micropower (micro-thermophotovoltaic) device,” Journal of Power Sources, vol. 165, no. 1, pp. 455-480, 2/25/, 2007.
[29] J. A. Miller, and C. T. Bowman, “Mechanism and modeling of nitrogen chemistry in combustion,” Progress in Energy and Combustion Science, vol. 15, no. 4, pp. 287-338, 1989/01/01, 1989.
[30] O. Deutschmann, R. Schmidt, F. Behrendt et al., “Numerical modeling of catalytic ignition,” Symposium (International) on Combustion, vol. 26, no. 1, pp. 1747-1754, 1996/01/01, 1996.
[31] J. Zarvandi, S. Tabejamaat, and M. Baigmohammadi, “Numerical study of the effects of heat transfer methods on CH4/(CH4 + H2)-AIR pre-mixed flames in a micro-stepped tube,” Energy, vol. 44, no. 1, pp. 396-409, 8//, 2012.
[32] O. Deutschmann, L. I. Maier, U. Riedel et al., “Hydrogen assisted catalytic combustion of methane on platinum,” Catalysis Today, vol. 59, no. 1–2, pp. 141-150, 6/10/, 2000.
[33] W. M. Yang, S. K. Chou, C. Shu et al., “Development of a prototype micro-thermophotovoltaic power generator,” Journal of Physics D: Applied Physics, vol. 37, no. 7, pp. 1017, 2004.
[34] O. M. Nielsen, L. R. Arana, C. D. Baertsch et al., "A thermophotovoltaic micro-generator for portable power applications." pp. 714-717 vol.1.