| 研究生: |
陳閔揚 Chen, Min-Yang |
|---|---|
| 論文名稱: |
集合住宅風場與熱舒適性多目的最佳化評估工具之開發 Development of a Multi-objective Optimization Tool of Wind Field and Thermal Comfort for Congregate Housing |
| 指導教授: |
蔡耀賢
Tsay, Yaw-Shyan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | BPS software 、建築前期設計階段 、參數化設計 、多目的最佳化 |
| 外文關鍵詞: | BPS software, Architectural Early Design Stage, Parametric Design, Multi-objective Optimization |
| 相關次數: | 點閱:104 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,許多建築設計專案會在設計流程中導入物理環境的模擬分析,提供更完整的設計方案評估,協助建築師進行設計決策。然而,在實務的建築設計工作中,常因時間、成本與技術的限制,使部分模擬分析的應用難以落實於前期概念設計階段,而是僅用於時間較充裕的細部設計階段,這可能使設計採用錯誤的環境策略或是錯失更佳的設計方案。
此外,建築設計是一需考量多個環境因子、需求條件的綜合性設計工作,在進行設計決策時要考量到所有面向條件,商討並做出最佳決策,而非追求單一設計目的最佳方案。
綜合上述兩問題,本研究整合建築設計工作中設計軟體與性能模擬分析軟體(BPS software:Building Performance Simulation software),發展出適用於前期概念設計階段的評估工具,並提出前期設計階段的風場、熱舒適性評估方法,以集合住宅設計為例,作多目的綜合評估。此外,為在緊湊的時間壓力下盡可能評估更多的設計方案,本評估工具導入了多目的最佳化演算法,藉NSGA-II演算法在較短的時間內進行多目的最佳化,給出性能表現優異的方案,供建築師選擇、作出決策。本評估工具內含參數化建立設計方案、物理環境性能模擬、模擬結果資料後處理、多目的最佳化評估和結果可視化。
後半章節選擇一社會住宅作為操作案例進行工具成效驗證,測試專案透過此評估工具進行方案發展與設計改善的成果。在案例驗證中,本工具於前期設計階段-「空間量體計畫」,可在3天的時間內評估8640組方案,並找出性能表現優異之方案可視化,此階段的三項評估指標「全年外殼表面熱輻射密度」、「熱季戶外平均日照小時數」、「冷季戶外平均日照小時數」性能分別提升12%、 23.9%及24.8%;於「量體造型調整」階段,延續上一階段決策的成果,導入CFD模擬生成風場與熱舒適相關評估指標,在1天的時間內評估640組方案,並找出性能表現優異之方案可視化,此階段的三項評估指標「通風潛力」、「舒適行人風場面積比」、「PET舒適區間面積比」性能分別提升13%、94.1%及5.6%,成效良好,顯示出透過此工具,可在前期設計階段進行更完整的設計評估,實行最佳的環境策略以建造出性能優異的建築。
In recent years, many architectural design projects import the building simulation of the physical environment into the design process providing complete design evaluation and assisting architects in making design decisions. However, in practical design work, due to time, cost, and technical constraints, it is difficult to implement simulation analysis in the early design stage, only used in the detail design stage with ample time. This may cause architects to adopt the wrong environmental strategy or miss a better design method in a project.
This research develops an evaluation tool for a congregate housing design process in the early design stage, integrating Design software and Building Performance Simulation software (BPS software); proposes wind field and thermal comfort evaluation standard using in the early design stage for evaluation; imports optimization algorithm to proceed multi-objective optimization in a short time, and provides options with excellent performance for architects to choose and make decisions.
In the end, work on a real social housing project to verify tool availability, and get this project performance improvement result through this evaluation tool. Step1 -"primary building form arrangement ", 8640 options could be evaluated in three days. Through this calculation process, three evaluation indicators "Annual Solar Radiation of Building Envelope ", "Hot Season Sunlight Hours" and "Cool Season Sunlight Hours" improve 12%, 23.9%, and 24.8% respectively. Step2 -"adjustment of building form" follow the result of the previous stage, and import CFD simulation to generate wind field and thermal comfort indicators. 640 options could be evaluated in one day. Three evaluation indicators "Ventilation Potential", "Comfortable Pedestrian Wind Area Ratio" and "PET Comfort Region Area Ratio " improve 13%, 94.1%, and 5.6% respectively, showing great effect.
(一) 中文文獻
1. 丁育群&朱佳仁 (2000),高層建築物風場環境評估準則研議,內政部建築研究所研究計劃報告。
2. 內政部建築研究所 (2013),臺灣建築能源模擬解析用逐時標準氣象資料TMY3之建置與研究。
3. 朱佳仁 (2006),風工程概論,科技圖書。
4. 村上周三著,朱清宇譯 (2007),CFD與建築環境設計,中國建築工業出版社
5. 林權萱 (2018),以建築師事務所觀點探究建築性能模擬軟體在設計實務中之採用因素,成功大學碩士論文。
6. 香港中文大學建築系 (2005),空氣流通評估方法可行性研究。
7. 郭建源 (2009),風洞試驗應用於行人風場環境影響評估之研究,內政部建築研究所自行研究報告。
8. 陳瑞鈴&朱佳仁 (2010),台灣地區建築物室內自然通風模式之建立研究,內政部建築研究所協同研究報告。
9. 臺中市政府住宅發展工程處 (2020),108年度-臺中市-社會住宅先期規劃結案報告書(烏日區新榮和段)
(二) 英文文獻
1. Augenbroe, G., & Park, C. S. (2005). Quantification methods of technical building performance. Building Research & Information, 33(2), 159-172.
2. Attia, S., Hamdy, M., O’Brien, W., & Carlucci, S. (2013). Assessing gaps and needs for integrating building performance optimization tools in net zero energy buildings design. Energy and Buildings, 60, 110-124.
3. Basic, S., Hollberg, A., Galimshina, A., & Habert, G. (2019, August). A design integrated parametric tool for real-time Life Cycle Assessment–Bombyx project. In IOP Conference Series: Earth and Environmental Science (Vol. 323, No. 1, p. 012112). IOP Publishing.
4. Blocken, B., & Carmeliet, J. (2004). Pedestrian wind environment around buildings: Literature review and practical examples. Journal of Thermal Envelope and Building Science, 28(2), 107-159.
5. Bröde, P., Fiala, D., Błażejczyk, K., Holmér, I., Jendritzky, G., Kampmann, B., ... & Havenith, G. (2012). Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). International journal of biometeorology, 56(3), 481-494.
6. Chen, K. W., Janssen, P., & Schlueter, A. (2018). Multi-objective optimisation of building form, envelope and cooling system for improved building energy performance. Automation in Construction, 94, 449-457.
7. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2), 182-197.
8. Du, Y., Mak, C. M., Kwok, K., Tse, K. T., Lee, T. C., Ai, Z., ... & Niu, J. (2017). New criteria for assessing low wind environment at pedestrian level in Hong Kong. Building and Environment, 123, 23-36.
9. Durgin, F. H. (1997). Pedestrian level wind criteria using the equivalent average. Journal of Wind Engineering and Industrial Aerodynamics, 66(3), 215-226.
10. Etheridge, D. (2011). Natural ventilation of buildings: theory, measurement and design. John Wiley & Sons.
11. Evins, R. (2013). A review of computational optimisation methods applied to sustainable building design. Renewable and sustainable energy reviews, 22, 230-245.
12. Finith, E. (2008). Big BIM little BIM: the practical approach to Building Information Modeling integrated practice done the right way!.
13. Flórez-Orrego, D., Arias, W., López, D., & Velásquez, H. (2012, June). Experimental and CFD study of a single phase cone-shaped helical coiled heat exchanger: an empirical correlation. In Proceedings of the 25th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (pp. 375-394).
14. Galapagos—Grasshopper.Available online: http://www.grasshopper3d.com/group/galapagos.
15. Grierson, D. E. (2008). Pareto multi-criteria decision making. Advanced Engineering Informatics, 22(3), 371-384.
16. Hensen, J. L., & Lamberts, R. (Eds.). (2012). Building performance simulation for design and operation. Routledge.
17. Hermund, A. (2011). Anvendt 3D modellering og parametrisk formgivning.
18. Hopfe, C. J. (2009). Uncertainty and sensitivity analysis in building performance simulation for decision support and design optimization. Eindhoven University of Technology, Eindhoven, 215.
19. Höppe, P. (1999). The physiological equivalent temperature–a universal index for the biometeorological assessment of the thermal environment. International journal of Biometeorology, 43(2), 71-75.
20. Hu, C. H., & Wang, F. (2005). Using a CFD approach for the study of street-level winds in a built-up area. Building and Environment, 40(5), 617-631.
21. Hunt, J. C. R., Poulton, E. C., & Mumford, J. C. (1976). The effects of wind on people; new criteria based on wind tunnel experiments. Building and Environment, 11(1), 15-28.
22. Isyumov, N., & Davenport, A. G. (1975). The ground level wind environment in built-up areas. In Proceedings of the 4th International Conference on Wind Effects on Buildings and Structures,(Heathrow 1975) (pp. 403-422).
23. Jabi, W. (2014). Parametric spatial models for energy analysis in the early design stages.
24. Konis, K., Gamas, A., & Kensek, K. (2016). Passive performance and building form: An optimization framework for early-stage design support. Solar Energy, 125, 161-179.
25. Lin, T. P., & Matzarakis, A. (2008). Tourism climate and thermal comfort in Sun Moon Lake, Taiwan. International journal of biometeorology, 52(4), 281-290.
26. Machairas, V., Tsangrassoulis, A., & Axarli, K. (2014). Algorithms for optimization of building design: A review. Renewable and sustainable energy reviews, 31, 101-112.
27. Mackey, C., Galanos, T., Norford, L., & Roudsari, M. S. (2017, August). Wind, sun, surface temperature, and heat island: critical variables for high-resolution outdoor thermal comfort. In Proceedings of the 15th international conference of building performance simulation association. San Francisco, USA.
28. Morbitzer, C. (2003). Towards the Integration of Simulation into the Building Design Process. PhD thesis, University of Strathclyde.
29. Murakami, S., Iwasa, Y., & Morikawa, Y. (1986). Study on acceptable criteria for assessing wind environment at ground level based on residents' diaries. Journal of Wind Engineering and Industrial Aerodynamics, 24(1), 1-18.
30. Negendahl, K. (2015). Building performance simulation in the early design stage: An introduction to integrated dynamic models. Automation in Construction, 54, 39-53.
31. Nguyen, A. T., Reiter, S., & Rigo, P. (2014). A review on simulation-based optimization methods applied to building performance analysis. Applied Energy, 113, 1043-1058.
32. Octopus, Food4Rhino. Available online: http://www.food4rhino.com/app/octopus
33. Olsen, E., & Iversen, M. (2006). IBPSA-USA presentation for engineers: overview of simulation.
34. Oxman, R. (2008). Digital architecture as a challenge for design pedagogy: theory, knowledge, models and medium. Design studies, 29(2), 99-120.
35. Østergård, T., Jensen, R. L., & Maagaard, S. E. (2016). Building simulations supporting decision making in early design–A review. Renewable and Sustainable Energy Reviews, 61, 187-201.
36. RADSITE (2020). Available online: https://www.radiance-online.org/
37. Ramsden, J., Keeling, T., Shepherd, P., SHEA, A., & Sharma, S. (2015, April). SmartBuildingAnalyser: A parametric early-stage analysis tool for multi-objective building design. In CIBSE Technical Symposium (pp. 1-15).
38. Ratcliff, M. A., & Peterka, J. A. (1990). Comparison of pedestrian wind acceptability criteria. Journal of Wind Engineering and Industrial Aerodynamics, 36, 791-800.
39. Reinhart, C. F. (2006). Tutorial on the use of daysim simulations for sustainable design. Institute for Research in Construction National Research Council Canada, Ottawa, Ont., K1A 0R6, Canada.
40. Roudsari, M. S., Pak, M., & Smith, A. (2013, August). Ladybug: a parametric environmental plugin for grasshopper to help designers create an environmentally-conscious design. In Proceedings of the 13th international IBPSA conference held in Lyon, France Aug (pp. 3128-3135).
41. Si, B., Wang, J., Yao, X., Shi, X., Jin, X., & Zhou, X. (2019). Multi-objective optimization design of a complex building based on an artificial neural network and performance evaluation of algorithms. Advanced Engineering Informatics, 40, 93-109.
42. Steadman, R. G. (1984). A universal scale of apparent temperature. Journal of Applied Meteorology and Climatology, 23(12), 1674-1687.
43. Stoelinga, P. (2005). Keynote I: Current practice of simulation in the building design process: a matter of communication IBPSA NL, TU Delft.
44. The Chinese University of Hong Kong, Planning Department (2008). Urban climatic map and standards for wind environment - Feasibility study
45. Touloupaki, E., & Theodosiou, T. (2017). Performance simulation integrated in parametric 3D modeling as a method for early stage design optimization—A review. Energies, 10(5), 637.
46. Verdonck, E., Weytjens, L., & Verbeeck Griet, F. H. (2011). Design Support Tools in Practice. The Architects' Perspective.
47. Versteeg, H.K.,& Malalasekera, W.. (1995). An introduction to Computational Fluid Dynamics- The finite volume method. Longman Group Ltd. p.149–151.
48. Wallacei—Grasshopper.Available online: https://www.wallacei.com/
49. Wang, B., & Malkawi, A. (2019). Design-based natural ventilation evaluation in early stage for high performance buildings. Sustainable cities and society, 45, 25-37.
50. Wetter, M. (2009). Generic Optimization Program User Manual Version 3.0. 0 (No. LBNL-2077E). Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States).
51. Yi, Y. K. (2019). Building facade multi-objective optimization for daylight and aesthetical perception. Building and Environment, 156, 178-190.
52. Zare, S., Hasheminejad, N., Shirvan, H. E., Hemmatjo, R., Sarebanzadeh, K., & Ahmadi, S. (2018). Comparing Universal Thermal Climate Index (UTCI) with selected thermal indices/environmental parameters during 12 months of the year. Weather and climate extremes, 19, 49-57.